These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
153 related articles for article (PubMed ID: 37620405)
1. Reference LINE-1 insertion polymorphisms correlate with Parkinson's disease progression and differential transcript expression in the PPMI cohort. Fröhlich A; Pfaff AL; Bubb VJ; Quinn JP; Koks S Sci Rep; 2023 Aug; 13(1):13857. PubMed ID: 37620405 [TBL] [Abstract][Full Text] [Related]
2. Non-reference genome transposable elements (TEs) have a significant impact on the progression of the Parkinson's disease. Kõks S; Pfaff AL; Singleton LM; Bubb VJ; Quinn JP Exp Biol Med (Maywood); 2022 Sep; 247(18):1680-1690. PubMed ID: 36000172 [TBL] [Abstract][Full Text] [Related]
3. An Increased Burden of Highly Active Retrotransposition Competent L1s Is Associated with Parkinson's Disease Risk and Progression in the PPMI Cohort. Pfaff AL; Bubb VJ; Quinn JP; Koks S Int J Mol Sci; 2020 Sep; 21(18):. PubMed ID: 32911699 [TBL] [Abstract][Full Text] [Related]
4. Regulatory SVA retrotransposons and classical HLA genotyped-transcripts associated with Parkinson's disease. Kulski JK; Suzuki S; Shiina T; Pfaff AL; Kõks S Front Immunol; 2024; 15():1349030. PubMed ID: 38590523 [TBL] [Abstract][Full Text] [Related]
5. Deciphering the role of a SINE-VNTR-Alu retrotransposon polymorphism as a biomarker of Parkinson's disease progression. Fröhlich A; Pfaff AL; Middlehurst B; Hughes LS; Bubb VJ; Quinn JP; Koks S Sci Rep; 2024 May; 14(1):10932. PubMed ID: 38740892 [TBL] [Abstract][Full Text] [Related]
6. SVA Regulation of Transposable Element Clustered Transcription within the Major Histocompatibility Complex Genomic Class II Region of the Parkinson's Progression Markers Initiative. Kulski JK; Pfaff AL; Koks S Genes (Basel); 2024 Sep; 15(9):. PubMed ID: 39336776 [TBL] [Abstract][Full Text] [Related]
7. Expression Quantitative Trait Loci (eQTLs) Associated with Retrotransposons Demonstrate their Modulatory Effect on the Transcriptome. Koks S; Pfaff AL; Bubb VJ; Quinn JP Int J Mol Sci; 2021 Jun; 22(12):. PubMed ID: 34204806 [TBL] [Abstract][Full Text] [Related]
8. Exploring SVA Insertion Polymorphisms in Shaping Differential Gene Expressions in the Central Nervous System. Hughes LS; Fröhlich A; Pfaff AL; Bubb VJ; Quinn JP; Kõks S Biomolecules; 2024 Mar; 14(3):. PubMed ID: 38540776 [TBL] [Abstract][Full Text] [Related]
9. Reference SVA insertion polymorphisms are associated with Parkinson's Disease progression and differential gene expression. Pfaff AL; Bubb VJ; Quinn JP; Koks S NPJ Parkinsons Dis; 2021 May; 7(1):44. PubMed ID: 34035310 [TBL] [Abstract][Full Text] [Related]
10. Regulation of expression quantitative trait loci by SVA retrotransposons within the major histocompatibility complex. Kulski JK; Pfaff AL; Marney LD; Fröhlich A; Bubb VJ; Quinn JP; Koks S Exp Biol Med (Maywood); 2023 Dec; 248(23):2304-2318. PubMed ID: 38031415 [TBL] [Abstract][Full Text] [Related]
11. The Landscape of L1 Retrotransposons in the Human Genome Is Shaped by Pre-insertion Sequence Biases and Post-insertion Selection. Sultana T; van Essen D; Siol O; Bailly-Bechet M; Philippe C; Zine El Aabidine A; Pioger L; Nigumann P; Saccani S; Andrau JC; Gilbert N; Cristofari G Mol Cell; 2019 May; 74(3):555-570.e7. PubMed ID: 30956044 [TBL] [Abstract][Full Text] [Related]
12. Characterisation of retrotransposon insertion polymorphisms in whole genome sequencing data from individuals with amyotrophic lateral sclerosis. Savage AL; Iacoangeli A; Schumann GG; Rubio-Roldan A; Garcia-Perez JL; Al Khleifat A; Koks S; Bubb VJ; Al-Chalabi A; Quinn JP Gene; 2022 Nov; 843():146799. PubMed ID: 35963498 [TBL] [Abstract][Full Text] [Related]
13. Characterisation of the Function of a SINE-VNTR- Fröhlich A; Pfaff AL; Bubb VJ; Koks S; Quinn JP Front Mol Neurosci; 2022; 15():815695. PubMed ID: 35370538 [TBL] [Abstract][Full Text] [Related]
14. Large-scale identification of clinical and genetic predictors of motor progression in patients with newly diagnosed Parkinson's disease: a longitudinal cohort study and validation. Latourelle JC; Beste MT; Hadzi TC; Miller RE; Oppenheim JN; Valko MP; Wuest DM; Church BW; Khalil IG; Hayete B; Venuto CS Lancet Neurol; 2017 Nov; 16(11):908-916. PubMed ID: 28958801 [TBL] [Abstract][Full Text] [Related]
15. CRISPR deletion of a SINE-VNTR- Fröhlich A; Hughes LS; Middlehurst B; Pfaff AL; Bubb VJ; Koks S; Quinn JP Front Neurol; 2023; 14():1273036. PubMed ID: 37840928 [TBL] [Abstract][Full Text] [Related]
16. Predictive Big Data Analytics: A Study of Parkinson's Disease Using Large, Complex, Heterogeneous, Incongruent, Multi-Source and Incomplete Observations. Dinov ID; Heavner B; Tang M; Glusman G; Chard K; Darcy M; Madduri R; Pa J; Spino C; Kesselman C; Foster I; Deutsch EW; Price ND; Van Horn JD; Ames J; Clark K; Hood L; Hampstead BM; Dauer W; Toga AW PLoS One; 2016; 11(8):e0157077. PubMed ID: 27494614 [TBL] [Abstract][Full Text] [Related]
17. Retrotransposable elements and human disease. Callinan PA; Batzer MA Genome Dyn; 2006; 1():104-115. PubMed ID: 18724056 [TBL] [Abstract][Full Text] [Related]
18. The landscape of human SVA retrotransposons. Chu C; Lin EW; Tran A; Jin H; Ho NI; Veit A; Cortes-Ciriano I; Burns KH; Ting DT; Park PJ Nucleic Acids Res; 2023 Nov; 51(21):11453-11465. PubMed ID: 37823611 [TBL] [Abstract][Full Text] [Related]
19. Epigenetic control of retrotransposon expression in human embryonic stem cells. Macia A; Muñoz-Lopez M; Cortes JL; Hastings RK; Morell S; Lucena-Aguilar G; Marchal JA; Badge RM; Garcia-Perez JL Mol Cell Biol; 2011 Jan; 31(2):300-16. PubMed ID: 21041477 [TBL] [Abstract][Full Text] [Related]