These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

154 related articles for article (PubMed ID: 37621195)

  • 1. Comparing Natural Language Processing and Structured Medical Data to Develop a Computable Phenotype for Patients Hospitalized Due to COVID-19: Retrospective Analysis.
    Chang F; Krishnan J; Hurst JH; Yarrington ME; Anderson DJ; O'Brien EC; Goldstein BA
    JMIR Med Inform; 2023 Aug; 11():e46267. PubMed ID: 37621195
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Classification of the Disposition of Patients Hospitalized with COVID-19: Reading Discharge Summaries Using Natural Language Processing.
    Fernandes M; Sun H; Jain A; Alabsi HS; Brenner LN; Ye E; Ge W; Collens SI; Leone MJ; Das S; Robbins GK; Mukerji SS; Westover MB
    JMIR Med Inform; 2021 Feb; 9(2):e25457. PubMed ID: 33449908
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Accuracy of Computable Phenotyping Approaches for SARS-CoV-2 Infection and COVID-19 Hospitalizations from the Electronic Health Record.
    Khera R; Mortazavi BJ; Sangha V; Warner F; Young HP; Ross JS; Shah ND; Theel ES; Jenkinson WG; Knepper C; Wang K; Peaper D; Martinello RA; Brandt CA; Lin Z; Ko AI; Krumholz HM; Pollock BD; Schulz WL
    medRxiv; 2021 May; ():. PubMed ID: 34013299
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Distinguishing Admissions Specifically for COVID-19 From Incidental SARS-CoV-2 Admissions: National Retrospective Electronic Health Record Study.
    Klann JG; Strasser ZH; Hutch MR; Kennedy CJ; Marwaha JS; Morris M; Samayamuthu MJ; Pfaff AC; Estiri H; South AM; Weber GM; Yuan W; Avillach P; Wagholikar KB; Luo Y; ; Omenn GS; Visweswaran S; Holmes JH; Xia Z; Brat GA; Murphy SN
    J Med Internet Res; 2022 May; 24(5):e37931. PubMed ID: 35476727
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Natural language processing of admission notes to predict severe maternal morbidity during the delivery encounter.
    Clapp MA; Kim E; James KE; Perlis RH; Kaimal AJ; McCoy TH
    Am J Obstet Gynecol; 2022 Sep; 227(3):511.e1-511.e8. PubMed ID: 35430230
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Moving Biosurveillance Beyond Coded Data Using AI for Symptom Detection From Physician Notes: Retrospective Cohort Study.
    McMurry AJ; Zipursky AR; Geva A; Olson KL; Jones JR; Ignatov V; Miller TA; Mandl KD
    J Med Internet Res; 2024 Apr; 26():e53367. PubMed ID: 38573752
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Enhancing readmission prediction models by integrating insights from home healthcare notes: Retrospective cohort study.
    Gan S; Kim C; Chang J; Lee DY; Park RW
    Int J Nurs Stud; 2024 Oct; 158():104850. PubMed ID: 39024965
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The Food and Drug Administration Biologics Effectiveness and Safety Initiative Facilitates Detection of Vaccine Administrations From Unstructured Data in Medical Records Through Natural Language Processing.
    Deady M; Ezzeldin H; Cook K; Billings D; Pizarro J; Plotogea AA; Saunders-Hastings P; Belov A; Whitaker BI; Anderson SA
    Front Digit Health; 2021; 3():777905. PubMed ID: 35005697
    [No Abstract]   [Full Text] [Related]  

  • 9. Natural language processing to identify lupus nephritis phenotype in electronic health records.
    Deng Y; Pacheco JA; Ghosh A; Chung A; Mao C; Smith JC; Zhao J; Wei WQ; Barnado A; Dorn C; Weng C; Liu C; Cordon A; Yu J; Tedla Y; Kho A; Ramsey-Goldman R; Walunas T; Luo Y
    BMC Med Inform Decis Mak; 2024 Mar; 22(Suppl 2):348. PubMed ID: 38433189
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Use of Natural Language Processing of Patient-Initiated Electronic Health Record Messages to Identify Patients With COVID-19 Infection.
    Mermin-Bunnell K; Zhu Y; Hornback A; Damhorst G; Walker T; Robichaux C; Mathew L; Jaquemet N; Peters K; Johnson TM; Wang MD; Anderson B
    JAMA Netw Open; 2023 Jul; 6(7):e2322299. PubMed ID: 37418261
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Evaluation of a Natural Language Processing Approach to Identify Diagnostic Errors and Analysis of Safety Learning System Case Review Data: Retrospective Cohort Study.
    Tabaie A; Tran A; Calabria T; Bennett SS; Milicia A; Weintraub W; Gallagher WJ; Yosaitis J; Schubel LC; Hill MA; Smith KM; Miller K
    J Med Internet Res; 2024 Aug; 26():e50935. PubMed ID: 39186764
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Development of an automated phenotyping algorithm for hepatorenal syndrome.
    Koola JD; Davis SE; Al-Nimri O; Parr SK; Fabbri D; Malin BA; Ho SB; Matheny ME
    J Biomed Inform; 2018 Apr; 80():87-95. PubMed ID: 29530803
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Deep Learning Approaches for Predicting Glaucoma Progression Using Electronic Health Records and Natural Language Processing.
    Wang SY; Tseng B; Hernandez-Boussard T
    Ophthalmol Sci; 2022 Jun; 2(2):100127. PubMed ID: 36249690
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Clinical Annotation Research Kit (CLARK): Computable Phenotyping Using Machine Learning.
    Pfaff ER; Crosskey M; Morton K; Krishnamurthy A
    JMIR Med Inform; 2020 Jan; 8(1):e16042. PubMed ID: 32012059
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Extracting Critical Information from Unstructured Clinicians' Notes Data to Identify Dementia Severity Using a Rule-Based Approach: Feasibility Study.
    Prakash R; Dupre ME; Østbye T; Xu H
    JMIR Aging; 2024 Sep; 7():e57926. PubMed ID: 39316421
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Psychosis Relapse Prediction Leveraging Electronic Health Records Data and Natural Language Processing Enrichment Methods.
    Lee DY; Kim C; Lee S; Son SJ; Cho SM; Cho YH; Lim J; Park RW
    Front Psychiatry; 2022; 13():844442. PubMed ID: 35479497
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Clinical Characteristics and Prognostic Factors for Intensive Care Unit Admission of Patients With COVID-19: Retrospective Study Using Machine Learning and Natural Language Processing.
    Izquierdo JL; Ancochea J; ; Soriano JB
    J Med Internet Res; 2020 Oct; 22(10):e21801. PubMed ID: 33090964
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Classifying social determinants of health from unstructured electronic health records using deep learning-based natural language processing.
    Han S; Zhang RF; Shi L; Richie R; Liu H; Tseng A; Quan W; Ryan N; Brent D; Tsui FR
    J Biomed Inform; 2022 Mar; 127():103984. PubMed ID: 35007754
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Predicting future falls in older people using natural language processing of general practitioners' clinical notes.
    Dormosh N; Schut MC; Heymans MW; Maarsingh O; Bouman J; van der Velde N; Abu-Hanna A
    Age Ageing; 2023 Apr; 52(4):. PubMed ID: 37014000
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Accuracy of COVID-19-Like Illness Diagnoses in Electronic Health Record Data: Retrospective Cohort Study.
    Rao S; Bozio C; Butterfield K; Reynolds S; Reese SE; Ball S; Steffens A; Demarco M; McEvoy C; Thompson M; Rowley E; Porter RM; Fink RV; Irving SA; Naleway A
    JMIR Form Res; 2023 Jan; 7():e39231. PubMed ID: 36383633
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.