BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

216 related articles for article (PubMed ID: 37621215)

  • 1. The EDC4-XRN1 interaction controls P-body dynamics to link mRNA decapping with decay.
    Brothers WR; Ali F; Kajjo S; Fabian MR
    EMBO J; 2023 Nov; 42(21):e113933. PubMed ID: 37621215
    [TBL] [Abstract][Full Text] [Related]  

  • 2. P-bodies directly regulate MARF1-mediated mRNA decay in human cells.
    Brothers WR; Fakim H; Kajjo S; Fabian MR
    Nucleic Acids Res; 2022 Jul; 50(13):7623-7636. PubMed ID: 35801873
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A low-complexity region in human XRN1 directly recruits deadenylation and decapping factors in 5'-3' messenger RNA decay.
    Chang CT; Muthukumar S; Weber R; Levdansky Y; Chen Y; Bhandari D; Igreja C; Wohlbold L; Valkov E; Izaurralde E
    Nucleic Acids Res; 2019 Sep; 47(17):9282-9295. PubMed ID: 31340047
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The activation of the decapping enzyme DCP2 by DCP1 occurs on the EDC4 scaffold and involves a conserved loop in DCP1.
    Chang CT; Bercovich N; Loh B; Jonas S; Izaurralde E
    Nucleic Acids Res; 2014 Apr; 42(8):5217-33. PubMed ID: 24510189
    [TBL] [Abstract][Full Text] [Related]  

  • 5. K63-Ubiquitylation and TRAF6 Pathways Regulate Mammalian P-Body Formation and mRNA Decapping.
    Tenekeci U; Poppe M; Beuerlein K; Buro C; Müller H; Weiser H; Kettner-Buhrow D; Porada K; Newel D; Xu M; Chen ZJ; Busch J; Schmitz ML; Kracht M
    Mol Cell; 2016 Jun; 62(6):943-957. PubMed ID: 27315556
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A non-canonical role for the EDC4 decapping factor in regulating MARF1-mediated mRNA decay.
    Brothers WR; Hebert S; Kleinman CL; Fabian MR
    Elife; 2020 Jun; 9():. PubMed ID: 32510323
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Dynamic "Cap"-abilities of P-bodies and the XRN1-EDC4 axis.
    Malsick LE; Wilusz J
    EMBO J; 2023 Nov; 42(21):e115310. PubMed ID: 37750488
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Human Pat1b connects deadenylation with mRNA decapping and controls the assembly of processing bodies.
    Ozgur S; Chekulaeva M; Stoecklin G
    Mol Cell Biol; 2010 Sep; 30(17):4308-23. PubMed ID: 20584987
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Concerted action of poly(A) nucleases and decapping enzyme in mammalian mRNA turnover.
    Yamashita A; Chang TC; Yamashita Y; Zhu W; Zhong Z; Chen CY; Shyu AB
    Nat Struct Mol Biol; 2005 Dec; 12(12):1054-63. PubMed ID: 16284618
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A direct interaction between DCP1 and XRN1 couples mRNA decapping to 5' exonucleolytic degradation.
    Braun JE; Truffault V; Boland A; Huntzinger E; Chang CT; Haas G; Weichenrieder O; Coles M; Izaurralde E
    Nat Struct Mol Biol; 2012 Dec; 19(12):1324-31. PubMed ID: 23142987
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A unique surface on Pat1 C-terminal domain directly interacts with Dcp2 decapping enzyme and Xrn1 5'-3' mRNA exonuclease in yeast.
    Charenton C; Gaudon-Plesse C; Fourati Z; Taverniti V; Back R; Kolesnikova O; Séraphin B; Graille M
    Proc Natl Acad Sci U S A; 2017 Nov; 114(45):E9493-E9501. PubMed ID: 29078363
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Spatio-temporal characterization of the antiviral activity of the XRN1-DCP1/2 aggregation against cytoplasmic RNA viruses to prevent cell death.
    Ng CS; Kasumba DM; Fujita T; Luo H
    Cell Death Differ; 2020 Aug; 27(8):2363-2382. PubMed ID: 32034313
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Structural and functional control of the eukaryotic mRNA decapping machinery.
    Arribas-Layton M; Wu D; Lykke-Andersen J; Song H
    Biochim Biophys Acta; 2013; 1829(6-7):580-9. PubMed ID: 23287066
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The ApaH-like phosphatase TbALPH1 is the major mRNA decapping enzyme of trypanosomes.
    Kramer S
    PLoS Pathog; 2017 Jun; 13(6):e1006456. PubMed ID: 28628654
    [TBL] [Abstract][Full Text] [Related]  

  • 15. RNA decapping inside and outside of processing bodies.
    Fillman C; Lykke-Andersen J
    Curr Opin Cell Biol; 2005 Jun; 17(3):326-31. PubMed ID: 15901504
    [TBL] [Abstract][Full Text] [Related]  

  • 16. c-Jun N-terminal kinase phosphorylates DCP1a to control formation of P bodies.
    Rzeczkowski K; Beuerlein K; Müller H; Dittrich-Breiholz O; Schneider H; Kettner-Buhrow D; Holtmann H; Kracht M
    J Cell Biol; 2011 Aug; 194(4):581-96. PubMed ID: 21859862
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Opposing Roles of Double-Stranded RNA Effector Pathways and Viral Defense Proteins Revealed with CRISPR-Cas9 Knockout Cell Lines and Vaccinia Virus Mutants.
    Liu R; Moss B
    J Virol; 2016 Sep; 90(17):7864-79. PubMed ID: 27334583
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Nonsense-mediated mRNA decay in mammalian cells involves decapping, deadenylating, and exonucleolytic activities.
    Lejeune F; Li X; Maquat LE
    Mol Cell; 2003 Sep; 12(3):675-87. PubMed ID: 14527413
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The 5' → 3' exoribonuclease XRN1/Pacman and its functions in cellular processes and development.
    Jones CI; Zabolotskaya MV; Newbury SF
    Wiley Interdiscip Rev RNA; 2012; 3(4):455-68. PubMed ID: 22383165
    [TBL] [Abstract][Full Text] [Related]  

  • 20. mRNA decay proteins are targeted to poly(A)+ RNA and dsRNA-containing cytoplasmic foci that resemble P-bodies in Entamoeba histolytica.
    López-Rosas I; Orozco E; Marchat LA; García-Rivera G; Guillen N; Weber C; Carrillo-Tapia E; Hernández de la Cruz O; Pérez-Plasencia C; López-Camarillo C
    PLoS One; 2012; 7(9):e45966. PubMed ID: 23029343
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.