These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

131 related articles for article (PubMed ID: 37621456)

  • 1. Seedability: optimizing alignment parameters for sensitive sequence comparison.
    Ayad LAK; Chikhi R; Pissis SP
    Bioinform Adv; 2023; 3(1):vbad108. PubMed ID: 37621456
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Theory of local k-mer selection with applications to long-read alignment.
    Shaw J; Yu YW
    Bioinformatics; 2022 Oct; 38(20):4659-4669. PubMed ID: 36124869
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Minimap2: pairwise alignment for nucleotide sequences.
    Li H
    Bioinformatics; 2018 Sep; 34(18):3094-3100. PubMed ID: 29750242
    [TBL] [Abstract][Full Text] [Related]  

  • 4. New strategies to improve minimap2 alignment accuracy.
    Li H
    Bioinformatics; 2021 Dec; 37(23):4572-4574. PubMed ID: 34623391
    [TBL] [Abstract][Full Text] [Related]  

  • 5. SATe-II: very fast and accurate simultaneous estimation of multiple sequence alignments and phylogenetic trees.
    Liu K; Warnow TJ; Holder MT; Nelesen SM; Yu J; Stamatakis AP; Linder CR
    Syst Biol; 2012 Jan; 61(1):90-106. PubMed ID: 22139466
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Using CLUSTAL for multiple sequence alignments.
    Higgins DG; Thompson JD; Gibson TJ
    Methods Enzymol; 1996; 266():383-402. PubMed ID: 8743695
    [TBL] [Abstract][Full Text] [Related]  

  • 7. All hits all the time: parameter-free calculation of spaced seed sensitivity.
    Mak DY; Benson G
    Bioinformatics; 2009 Feb; 25(3):302-8. PubMed ID: 19095701
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Large-scale comparison of protein sequence alignment algorithms with structure alignments.
    Sauder JM; Arthur JW; Dunbrack RL
    Proteins; 2000 Jul; 40(1):6-22. PubMed ID: 10813826
    [TBL] [Abstract][Full Text] [Related]  

  • 9. BLEND: a fast, memory-efficient and accurate mechanism to find fuzzy seed matches in genome analysis.
    Firtina C; Park J; Alser M; Kim JS; Cali DS; Shahroodi T; Ghiasi NM; Singh G; Kanellopoulos K; Alkan C; Mutlu O
    NAR Genom Bioinform; 2023 Mar; 5(1):lqad004. PubMed ID: 36685727
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A Characteristic-Based Framework for Multiple Sequence Aligners.
    Rubio-Largo A; Vanneschi L; Castelli M; Vega-Rodriguez MA
    IEEE Trans Cybern; 2018 Jan; 48(1):41-51. PubMed ID: 27831898
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Improving pairwise sequence alignment accuracy using near-optimal protein sequence alignments.
    Sierk ML; Smoot ME; Bass EJ; Pearson WR
    BMC Bioinformatics; 2010 Mar; 11():146. PubMed ID: 20307279
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Accurate multiple alignment of distantly related genome sequences using filtered spaced word matches as anchor points.
    Leimeister CA; Dencker T; Morgenstern B
    Bioinformatics; 2019 Jan; 35(2):211-218. PubMed ID: 29992260
    [TBL] [Abstract][Full Text] [Related]  

  • 13. kngMap: Sensitive and Fast Mapping Algorithm for Noisy Long Reads Based on the
    Wei ZG; Fan XG; Zhang H; Zhang XD; Liu F; Qian Y; Zhang SW
    Front Genet; 2022; 13():890651. PubMed ID: 35601495
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Efficient Seeding for Error-Prone Sequences with SubseqHash2.
    Li X; Chen K; Shao M
    bioRxiv; 2024 Jun; ():. PubMed ID: 38895288
    [TBL] [Abstract][Full Text] [Related]  

  • 15. EMMA: a new method for computing multiple sequence alignments given a constraint subset alignment.
    Shen C; Liu B; Williams KP; Warnow T
    Algorithms Mol Biol; 2023 Dec; 18(1):21. PubMed ID: 38062452
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Using paired-end sequences to optimise parameters for alignment of sequence reads against related genomes.
    Ratnakumar A; McWilliam S; Barris W; Dalrymple BP
    BMC Genomics; 2010 Aug; 11():458. PubMed ID: 20678236
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Fast and memory efficient approach for mapping NGS reads to a reference genome.
    Kumar S; Agarwal S; Ranvijay
    J Bioinform Comput Biol; 2019 Apr; 17(2):1950008. PubMed ID: 31057068
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Lerna: transformer architectures for configuring error correction tools for short- and long-read genome sequencing.
    Sharma A; Jain P; Mahgoub A; Zhou Z; Mahadik K; Chaterji S
    BMC Bioinformatics; 2022 Jan; 23(1):25. PubMed ID: 34991450
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Genome-wide alignment-free phylogenetic distance estimation under a no strand-bias model.
    Balaban M; Bristy NA; Faisal A; Bayzid MS; Mirarab S
    Bioinform Adv; 2022; 2(1):vbac055. PubMed ID: 35992043
    [TBL] [Abstract][Full Text] [Related]  

  • 20. HMMerge: an ensemble method for multiple sequence alignment.
    Park M; Warnow T
    Bioinform Adv; 2023; 3(1):vbad052. PubMed ID: 37128578
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.