These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

136 related articles for article (PubMed ID: 37621695)

  • 1. Recyclable and Degradable Ionic-Substituted Long-Chain Polyesters.
    Saumer A; Mecking S
    ACS Sustain Chem Eng; 2023 Aug; 11(33):12414-12422. PubMed ID: 37621695
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Polyethylene-Like Blends Amenable to Abiotic Hydrolytic Degradation.
    Eck M; Bernabeu L; Mecking S
    ACS Sustain Chem Eng; 2023 Mar; 11(12):4523-4530. PubMed ID: 37008182
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Chemically Recyclable CO
    Lou Y; Xu J; Xu L; Chen Z; Lin BL
    Macromol Rapid Commun; 2022 Oct; 43(20):e2200341. PubMed ID: 35611450
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Ring-Opening Polymerization of Cyclic Acetals: Strategy for both Recyclable and Degradable Materials.
    Shen T; Chen K; Chen Y; Ling J
    Macromol Rapid Commun; 2023 Jul; 44(13):e2300099. PubMed ID: 37020406
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Biodegradable High-Density Polyethylene-like Material.
    Eck M; Schwab ST; Nelson TF; Wurst K; Iberl S; Schleheck D; Link C; Battagliarin G; Mecking S
    Angew Chem Int Ed Engl; 2023 Feb; 62(6):e202213438. PubMed ID: 36480133
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Closed-loop recycling of polyethylene-like materials.
    Häußler M; Eck M; Rothauer D; Mecking S
    Nature; 2021 Feb; 590(7846):423-427. PubMed ID: 33597754
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Sustainable polyesters via direct functionalization of lignocellulosic sugars.
    Manker LP; Dick GR; Demongeot A; Hedou MA; Rayroud C; Rambert T; Jones MJ; Sulaeva I; Vieli M; Leterrier Y; Potthast A; Maréchal F; Michaud V; Klok HA; Luterbacher JS
    Nat Chem; 2022 Sep; 14(9):976-984. PubMed ID: 35739426
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Multiblock Copolymers for Recycling Polyethylene-Poly(ethylene terephthalate) Mixed Waste.
    Nomura K; Peng X; Kim H; Jin K; Kim HJ; Bratton AF; Bond CR; Broman AE; Miller KM; Ellison CJ
    ACS Appl Mater Interfaces; 2020 Feb; 12(8):9726-9735. PubMed ID: 32017525
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Degradable Anti-Biofouling Polyester Coatings with Controllable Lifetimes.
    Mu G; Genzer J; Gorman CB
    Langmuir; 2022 Feb; 38(4):1488-1496. PubMed ID: 35050633
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Synthesis by Melt-Polymerization of a Novel Series of Bio-Based and Biodegradable Thiophene-Containing Copolyesters with Promising Gas Barrier and High Thermomechanical Properties.
    Djouonkep LDW; Tamo CT; Simo BE; Issah N; Tchouagtie MN; Selabi NBS; Doench I; Kamdem Tamo A; Xie B; Osorio-Madrazo A
    Molecules; 2023 Feb; 28(4):. PubMed ID: 36838821
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Hydrolytically degradable hyperbranched PEG-polyester adhesive with low swelling and robust mechanical properties.
    Zhang H; Zhao T; Duffy P; Dong Y; Annaidh AN; O'Cearbhaill E; Wang W
    Adv Healthc Mater; 2015 Oct; 4(15):2260-8. PubMed ID: 26346527
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Enhanced Polyester Degradation through Transesterification with Salicylates.
    Kim HJ; Hillmyer MA; Ellison CJ
    J Am Chem Soc; 2021 Sep; 143(38):15784-15790. PubMed ID: 34529416
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Printability and Critical Insight into Polymer Properties during Direct-Extrusion Based 3D Printing of Medical Grade Polylactide and Copolyesters.
    Jain S; Fuoco T; Yassin MA; Mustafa K; Finne-Wistrand A
    Biomacromolecules; 2020 Feb; 21(2):388-396. PubMed ID: 31566357
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Vinyl copolymers with faster hydrolytic degradation than aliphatic polyesters and tunable upper critical solution temperatures.
    Bossion A; Zhu C; Guerassimoff L; Mougin J; Nicolas J
    Nat Commun; 2022 May; 13(1):2873. PubMed ID: 35610204
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Preparation, characterization and properties of poly(2,2-dimethyl trimethylene carbonate-co-epsilon-caprolactone)-block-poly(ethylene glycol).
    Hu Y; Zhu KJ
    J Biomater Sci Polym Ed; 2003; 14(12):1363-76. PubMed ID: 14870940
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Click Step-Growth Polymerization and
    Worch JC; Dove AP
    Acc Chem Res; 2022 Sep; 55(17):2355-2369. PubMed ID: 36006902
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Preparation and properties of biomedical segmented polyurethanes based on poly(ether ester) and uniform-size diurethane diisocyanates.
    Yin S; Xia Y; Jia Q; Hou ZS; Zhang N
    J Biomater Sci Polym Ed; 2017 Jan; 28(1):119-138. PubMed ID: 27774855
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Synthesis and Enzymatic Degradation of Soft Aliphatic Polyesters.
    Buchholz V; Agarwal S; Greiner A
    Macromol Biosci; 2016 Feb; 16(2):207-13. PubMed ID: 26401992
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Synthesis of degradable and chemically recyclable polymers using 4,4-disubstituted five-membered cyclic ketene hemiacetal ester (CKHE) monomers.
    Oh XY; Ge Y; Goto A
    Chem Sci; 2021 Oct; 12(40):13546-13556. PubMed ID: 34777774
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Unraveling the Interplay between Abiotic Hydrolytic Degradation and Crystallization of Bacterial Polyesters Comprising Short and Medium Side-Chain-Length Polyhydroxyalkanoates.
    Tarazona NA; Machatschek R; Lendlein A
    Biomacromolecules; 2020 Feb; 21(2):761-771. PubMed ID: 31841314
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.