These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

116 related articles for article (PubMed ID: 37622226)

  • 1. 3D printing stretchable and compressible porous structures by polymerizable emulsions for soft robotics.
    Bliah O; Joe S; Reinberg R; Nardin AB; Beccai L; Magdassi S
    Mater Horiz; 2023 Oct; 10(11):4976-4985. PubMed ID: 37622226
    [TBL] [Abstract][Full Text] [Related]  

  • 2. 3D Printed Hierarchical Porous Poly(ε-caprolactone) Scaffolds from Pickering High Internal Phase Emulsion Templating.
    Ghosh S; Yadav A; Rani S; Takkar S; Kulshreshtha R; Nandan B; Srivastava RK
    Langmuir; 2023 Feb; 39(5):1927-1946. PubMed ID: 36701663
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Emulsion Inks for 3D Printing of High Porosity Materials.
    Sears NA; Dhavalikar PS; Cosgriff-Hernandez EM
    Macromol Rapid Commun; 2016 Aug; 37(16):1369-74. PubMed ID: 27305061
    [TBL] [Abstract][Full Text] [Related]  

  • 4. 3D Printing Materials for Soft Robotics.
    Sachyani Keneth E; Kamyshny A; Totaro M; Beccai L; Magdassi S
    Adv Mater; 2021 May; 33(19):e2003387. PubMed ID: 33164255
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Jointless Bioinspired Soft Robotics by Harnessing Micro and Macroporosity.
    Joe S; Bliah O; Magdassi S; Beccai L
    Adv Sci (Weinh); 2023 Aug; 10(23):e2302080. PubMed ID: 37323121
    [TBL] [Abstract][Full Text] [Related]  

  • 6. 3D Printing of Highly Stretchable, Shape-Memory, and Self-Healing Elastomer toward Novel 4D Printing.
    Kuang X; Chen K; Dunn CK; Wu J; Li VCF; Qi HJ
    ACS Appl Mater Interfaces; 2018 Feb; 10(8):7381-7388. PubMed ID: 29400445
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Photocurable 3D-Printable Systems with Controlled Porosity towards CO
    Chiappone A; Pedico A; Porcu S; Pirri CF; Lamberti A; Roppolo I
    Polymers (Basel); 2022 Dec; 14(23):. PubMed ID: 36501659
    [TBL] [Abstract][Full Text] [Related]  

  • 8. On-demand modulation of 3D-printed elastomers using programmable droplet inclusions.
    Mea HJ; Delgadillo L; Wan J
    Proc Natl Acad Sci U S A; 2020 Jun; 117(26):14790-14797. PubMed ID: 32541054
    [TBL] [Abstract][Full Text] [Related]  

  • 9. 3D Printed Chitosan Composite Scaffold for Chondrocytes Differentiation.
    Sahai N; Gogoi M; Tewari RP
    Curr Med Imaging; 2021; 17(7):832-842. PubMed ID: 33334294
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A pickering emulsion stabilized by chlorella microalgae as an eco-friendly extrusion-based 3D printing ink processable under ambient conditions.
    Kwak C; Young Ryu S; Park H; Lim S; Yang J; Kim J; Hyung Kim J; Lee J
    J Colloid Interface Sci; 2021 Jan; 582(Pt A):81-89. PubMed ID: 32814225
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Hierarchical Porous Ceramics with Distinctive Microstructures by Emulsion-Based Direct Ink Writing.
    Liu Q; Zhai W
    ACS Appl Mater Interfaces; 2022 Jul; 14(28):32196-32205. PubMed ID: 35786835
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Three-Dimensional Printed Highly Porous and Flexible Conductive Polymer Nanocomposites with Dual-Scale Porosity and Piezoresistive Sensing Functions.
    Abshirini M; Marashizadeh P; Saha MC; Altan MC; Liu Y
    ACS Appl Mater Interfaces; 2023 Mar; ():. PubMed ID: 36912907
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Direct Write Printing of Ultraviolet-Curable Bulk Superhydrophobic Ink Material.
    Jiang R; Li Y; Chao S; Chen Y; Shao H; Guo Y; Wang X; Tang C
    ACS Appl Mater Interfaces; 2023 Oct; ():. PubMed ID: 37879068
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Fabrication of 3D freeform porous tubular constructs with mechanical flexibility mimicking that of soft vascular tissue.
    Lee JE; Park SJ; Yoon Y; Son Y; Park SH
    J Mech Behav Biomed Mater; 2019 Mar; 91():193-201. PubMed ID: 30594061
    [TBL] [Abstract][Full Text] [Related]  

  • 15. 3D printing of concentrated emulsions into multiphase biocompatible soft materials.
    Sommer MR; Alison L; Minas C; Tervoort E; Rühs PA; Studart AR
    Soft Matter; 2017 Mar; 13(9):1794-1803. PubMed ID: 28165099
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Multimaterial 3D Printing of Highly Stretchable Silicone Elastomers.
    Zhou LY; Gao Q; Fu JZ; Chen QY; Zhu JP; Sun Y; He Y
    ACS Appl Mater Interfaces; 2019 Jul; 11(26):23573-23583. PubMed ID: 31184459
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Highly Stretchable and UV Curable Elastomers for Digital Light Processing Based 3D Printing.
    Patel DK; Sakhaei AH; Layani M; Zhang B; Ge Q; Magdassi S
    Adv Mater; 2017 Apr; 29(15):. PubMed ID: 28169466
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Facile fabrication of micro-/nanostructured, superhydrophobic membranes with adjustable porosity by 3D printing.
    Mayoussi F; Doeven EH; Kick A; Goralczyk A; Thomann Y; Risch P; Guijt RM; Kotz F; Helmer D; Rapp BE
    J Mater Chem A Mater; 2021 Sep; 9(37):21379-21386. PubMed ID: 34603732
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Control of maleic acid-propylene diepoxide hydrogel for 3D printing application for flexible tissue engineering scaffold with high resolution by end capping and graft polymerization.
    Tran HN; Kim IG; Kim JH; Chung EJ; Noh I
    Biomater Res; 2022 Dec; 26(1):75. PubMed ID: 36494708
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Shape fidelity, mechanical and biological performance of 3D printed polycaprolactone-bioactive glass composite scaffolds.
    Baier RV; Contreras Raggio JI; Giovanetti CM; Palza H; Burda I; Terrasi G; Weisse B; De Freitas GS; Nyström G; Vivanco JF; Aiyangar AK
    Biomater Adv; 2022 Mar; 134():112540. PubMed ID: 35525740
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.