These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

97 related articles for article (PubMed ID: 3762223)

  • 41. Improved noise reduction in single fiber auditory neural responses using template subtraction.
    Woo J; Miller CA; Abbas PJ; Hong SH; Kim IY
    J Neurosci Methods; 2006 Sep; 155(2):319-27. PubMed ID: 16490259
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Unsupervised neural spike sorting for high-density microelectrode arrays with convolutive independent component analysis.
    Leibig C; Wachtler T; Zeck G
    J Neurosci Methods; 2016 Sep; 271():1-13. PubMed ID: 27317497
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Generalized analog thresholding for spike acquisition at ultralow sampling rates.
    He BD; Wein A; Varshney LR; Kusuma J; Richardson AG; Srinivasan L
    J Neurophysiol; 2015 Jul; 114(1):746-60. PubMed ID: 25904712
    [TBL] [Abstract][Full Text] [Related]  

  • 44. The M-Sorter: an automatic and robust spike detection and classification system.
    Yuan Y; Yang C; Si J
    J Neurosci Methods; 2012 Sep; 210(2):281-90. PubMed ID: 22841940
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Spike coding during locomotor network activity in ventrally located neurons in the isolated spinal cord from neonatal rat.
    Raastad M; Kiehn O
    J Neurophysiol; 2000 May; 83(5):2825-34. PubMed ID: 10805680
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Optimal discrimination and classification of neuronal action potential waveforms from multiunit, multichannel recordings using software-based linear filters.
    Gozani SN; Miller JP
    IEEE Trans Biomed Eng; 1994 Apr; 41(4):358-72. PubMed ID: 8063302
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Spike timing and reliability in cortical pyramidal neurons: effects of EPSC kinetics, input synchronization and background noise on spike timing.
    Rodriguez-Molina VM; Aertsen A; Heck DH
    PLoS One; 2007 Mar; 2(3):e319. PubMed ID: 17389910
    [TBL] [Abstract][Full Text] [Related]  

  • 48. An improved method for the estimation of firing rate dynamics using an optimal digital filter.
    Cherif S; Cullen KE; Galiana HL
    J Neurosci Methods; 2008 Aug; 173(1):165-81. PubMed ID: 18577401
    [TBL] [Abstract][Full Text] [Related]  

  • 49. t-SNE Visualization of Large-Scale Neural Recordings.
    Dimitriadis G; Neto JP; Kampff AR
    Neural Comput; 2018 Jul; 30(7):1750-1774. PubMed ID: 29894653
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Variable Action Potential Backpropagation during Tonic Firing and Low-Threshold Spike Bursts in Thalamocortical But Not Thalamic Reticular Nucleus Neurons.
    Connelly WM; Crunelli V; Errington AC
    J Neurosci; 2017 May; 37(21):5319-5333. PubMed ID: 28450536
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Differences in responses to 70 dB clicks of cerebellar units with simple versus complex spike activity: (i) in medial and lateral ansiform lobes and flocculus; and (ii) before and after conditioning blink conditioned responses with clicks as conditioned stimuli.
    Woody CD; Nahvi A; Palermo G; Wan J; Wang XF; Gruen E
    Neuroscience; 1999; 90(4):1227-41. PubMed ID: 10338293
    [TBL] [Abstract][Full Text] [Related]  

  • 52. An integrated system for multichannel neuronal recording with spike/LFP separation, integrated A/D conversion and threshold detection.
    Perelman Y; Ginosar R
    IEEE Trans Biomed Eng; 2007 Jan; 54(1):130-7. PubMed ID: 17260864
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Intracellular and extracellular electrophysiology of nigral dopaminergic neurons--2. Action potential generating mechanisms and morphological correlates.
    Grace AA; Bunney BS
    Neuroscience; 1983 Oct; 10(2):317-31. PubMed ID: 6633864
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Sensitivity of auditory cortical neurons to locations of signals and competing noise sources.
    Furukawa S; Middlebrooks JC
    J Neurophysiol; 2001 Jul; 86(1):226-40. PubMed ID: 11431504
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Analysis of extracellular potentials using an IBM PC.
    Bagust J
    Comp Biochem Physiol A Comp Physiol; 1989; 93(1):161-70. PubMed ID: 2568218
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Alterations in the properties of hippocampal pyramidal neurons in the aged rat.
    Potier B; Rascol O; Jazat F; Lamour Y; Dutar P
    Neuroscience; 1992 Jun; 48(4):793-806. PubMed ID: 1630625
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Morphology of spikes in spike-and-wave complexes.
    Blume WT; Lemieux JF
    Electroencephalogr Clin Neurophysiol; 1988 Jun; 69(6):508-15. PubMed ID: 2453327
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Spike source localization with tetrodes.
    Chelaru MI; Jog MS
    J Neurosci Methods; 2005 Mar; 142(2):305-15. PubMed ID: 15698670
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Quantifying the isolation quality of extracellularly recorded action potentials.
    Joshua M; Elias S; Levine O; Bergman H
    J Neurosci Methods; 2007 Jul; 163(2):267-82. PubMed ID: 17477972
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Coherent spatiotemporal patterns of ongoing activity revealed by real-time optical imaging coupled with single-unit recording in the cat visual cortex.
    Arieli A; Shoham D; Hildesheim R; Grinvald A
    J Neurophysiol; 1995 May; 73(5):2072-93. PubMed ID: 7623099
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 5.