These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

174 related articles for article (PubMed ID: 37622352)

  • 1. [Bioconversion of C1 gases and genetic engineering modification of gas-utilizing microorganisms].
    Zhou Y; Ruan Z; Fang C; Chen X; Xu H; Wang Z; Yuan Z
    Sheng Wu Gong Cheng Xue Bao; 2023 Aug; 39(8):3125-3142. PubMed ID: 37622352
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Genetic Engineering of
    Siebert D; Busche T; Metz AY; Smaili M; Queck BAW; Kalinowski J; Eikmanns BJ
    ACS Synth Biol; 2020 Jun; 9(6):1426-1440. PubMed ID: 32379961
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Bio-valorization of C1 gaseous substrates into bioalcohols: Potentials and challenges in reducing carbon emissions.
    Hu L; Guo S; Wang B; Fu R; Fan D; Jiang M; Fei Q; Gonzalez R
    Biotechnol Adv; 2022 Oct; 59():107954. PubMed ID: 35417775
    [TBL] [Abstract][Full Text] [Related]  

  • 4. [Genetic modification of acetogens and optimization of fermentation process in C1-gas bioconversion].
    Wan S; Wang H; Ma X; Tan Y; Liu L; Li F
    Sheng Wu Gong Cheng Xue Bao; 2023 Jun; 39(6):2410-2429. PubMed ID: 37401601
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Production of chemicals from C1 gases (CO, CO
    Fernández-Naveira Á; Abubackar HN; Veiga MC; Kennes C
    World J Microbiol Biotechnol; 2017 Mar; 33(3):43. PubMed ID: 28160118
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Genetic and metabolic engineering challenges of C1-gas fermenting acetogenic chassis organisms.
    Bourgade B; Minton NP; Islam MA
    FEMS Microbiol Rev; 2021 Mar; 45(2):. PubMed ID: 33595667
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Engineered acetogenic bacteria as microbial cell factory for diversified biochemicals.
    Zhang JZ; Li YZ; Xi ZN; Gao HP; Zhang Q; Liu LC; Li FL; Ma XQ
    Front Bioeng Biotechnol; 2024; 12():1395540. PubMed ID: 39055341
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Recent trends of biotechnological production of polyhydroxyalkanoates from C1 carbon sources.
    Ray S; Jin JO; Choi I; Kim M
    Front Bioeng Biotechnol; 2022; 10():907500. PubMed ID: 36686222
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Bacterial Anaerobic Synthesis Gas (Syngas) and CO
    Bengelsdorf FR; Beck MH; Erz C; Hoffmeister S; Karl MM; Riegler P; Wirth S; Poehlein A; Weuster-Botz D; Dürre P
    Adv Appl Microbiol; 2018; 103():143-221. PubMed ID: 29914657
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Conversion of Carbon Monoxide to Chemicals Using Microbial Consortia.
    Parera Olm I; Sousa DZ
    Adv Biochem Eng Biotechnol; 2022; 180():373-407. PubMed ID: 34811579
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Process Engineering Aspects for the Microbial Conversion of C1 Gases.
    Weuster-Botz D
    Adv Biochem Eng Biotechnol; 2022; 180():33-56. PubMed ID: 34291298
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Engineering Acetogenic Bacteria for Efficient One-Carbon Utilization.
    Lee H; Bae J; Jin S; Kang S; Cho BK
    Front Microbiol; 2022; 13():865168. PubMed ID: 35615514
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Strategies for Biosynthesis of C1 Gas-derived Polyhydroxyalkanoates: A review.
    Yoon J; Oh MK
    Bioresour Technol; 2022 Jan; 344(Pt B):126307. PubMed ID: 34767907
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Synthetic Biology on Acetogenic Bacteria for Highly Efficient Conversion of C1 Gases to Biochemicals.
    Jin S; Bae J; Song Y; Pearcy N; Shin J; Kang S; Minton NP; Soucaille P; Cho BK
    Int J Mol Sci; 2020 Oct; 21(20):. PubMed ID: 33076477
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Exploiting Aerobic Carboxydotrophic Bacteria for Industrial Biotechnology.
    Siebert D; Eikmanns BJ; Blombach B
    Adv Biochem Eng Biotechnol; 2022; 180():1-32. PubMed ID: 34894287
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Microbiology of synthesis gas fermentation for biofuel production.
    Henstra AM; Sipma J; Rinzema A; Stams AJ
    Curr Opin Biotechnol; 2007 Jun; 18(3):200-6. PubMed ID: 17399976
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Syngas Biorefinery and Syngas Utilization.
    De Tissera S; Köpke M; Simpson SD; Humphreys C; Minton NP; Dürre P
    Adv Biochem Eng Biotechnol; 2019; 166():247-280. PubMed ID: 28631029
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Stepping on the Gas to a Circular Economy: Accelerating Development of Carbon-Negative Chemical Production from Gas Fermentation.
    Fackler N; Heijstra BD; Rasor BJ; Brown H; Martin J; Ni Z; Shebek KM; Rosin RR; Simpson SD; Tyo KE; Giannone RJ; Hettich RL; Tschaplinski TJ; Leang C; Brown SD; Jewett MC; Köpke M
    Annu Rev Chem Biomol Eng; 2021 Jun; 12():439-470. PubMed ID: 33872517
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Gas Fermentation-A Flexible Platform for Commercial Scale Production of Low-Carbon-Fuels and Chemicals from Waste and Renewable Feedstocks.
    Liew F; Martin ME; Tappel RC; Heijstra BD; Mihalcea C; Köpke M
    Front Microbiol; 2016; 7():694. PubMed ID: 27242719
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Absolute Proteome Quantification in the Gas-Fermenting Acetogen
    Valgepea K; Talbo G; Takemori N; Takemori A; Ludwig C; Mahamkali V; Mueller AP; Tappel R; Köpke M; Simpson SD; Nielsen LK; Marcellin E
    mSystems; 2022 Apr; 7(2):e0002622. PubMed ID: 35384696
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.