These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

112 related articles for article (PubMed ID: 37622426)

  • 1. On the
    Castrillo A; Fasci E; Furtenbacher T; D'Agostino V; Khan MA; Gravina S; Gianfrani L; Császár AG
    Phys Chem Chem Phys; 2023 Sep; 25(35):23614-23625. PubMed ID: 37622426
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Communication: Molecular near-infrared transitions determined with sub-kHz accuracy.
    Wang J; Sun YR; Tao LG; Liu AW; Hu SM
    J Chem Phys; 2017 Sep; 147(9):091103. PubMed ID: 28886636
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Lamb dip CRDS of highly saturated transitions of water near 1.4 μm.
    Kassi S; Stoltmann T; Casado M; Daëron M; Campargue A
    J Chem Phys; 2018 Feb; 148(5):054201. PubMed ID: 29421897
    [TBL] [Abstract][Full Text] [Related]  

  • 4.
    Fleurbaey H; Čermák P; Campargue A; Kassi S; Romanini D; Votava O; Mondelain D
    Phys Chem Chem Phys; 2023 Jun; 25(24):16319-16330. PubMed ID: 37309841
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Comb-linked, cavity ring-down spectroscopy for measurements of molecular transition frequencies at the kHz-level.
    Truong GW; Long DA; Cygan A; Lisak D; van Zee RD; Hodges JT
    J Chem Phys; 2013 Mar; 138(9):094201. PubMed ID: 23485285
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Comb coherence-transfer and cavity ring-down saturation spectroscopy around 1.65 μm: kHz-accurate frequencies of transitions in the 2ν
    Votava O; Kassi S; Campargue A; Romanini D
    Phys Chem Chem Phys; 2022 Feb; 24(7):4157-4173. PubMed ID: 35107098
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Communication: Saturated CO2 absorption near 1.6 μm for kilohertz-accuracy transition frequencies.
    Burkart J; Sala T; Romanini D; Marangoni M; Campargue A; Kassi S
    J Chem Phys; 2015 May; 142(19):191103. PubMed ID: 26001440
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Comb-locked cavity ring-down saturation spectroscopy.
    Wang J; Sun YR; Tao LG; Liu AW; Hua TP; Meng F; Hu SM
    Rev Sci Instrum; 2017 Apr; 88(4):043108. PubMed ID: 28456258
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A well-isolated vibrational state of CO
    Wu H; Hu CL; Wang J; Sun YR; Tan Y; Liu AW; Hu SM
    Phys Chem Chem Phys; 2020 Feb; 22(5):2841-2848. PubMed ID: 31967121
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Absolute spectroscopy of N2O near 4.5 μm with a comb-calibrated, frequency-swept quantum cascade laser spectrometer.
    Knabe K; Williams PA; Giorgetta FR; Radunsky MB; Armacost CM; Crivello S; Newbury NR
    Opt Express; 2013 Jan; 21(1):1020-9. PubMed ID: 23388996
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The high-accuracy spectroscopy of H
    Fleurbaey H; Koroleva AO; Kassi S; Campargue A
    Phys Chem Chem Phys; 2023 May; 25(21):14749-14756. PubMed ID: 37219518
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Absolute frequency metrology of buffer-gas-cooled molecular spectra at 1 kHz accuracy level.
    Aiello R; Di Sarno V; Delli Santi MG; De Rosa M; Ricciardi I; De Natale P; Santamaria L; Giusfredi G; Maddaloni P
    Nat Commun; 2022 Nov; 13(1):7016. PubMed ID: 36385118
    [TBL] [Abstract][Full Text] [Related]  

  • 13. High resolution FTIR spectroscopy of germane: First study of
    Ulenikov ON; Gromova OV; Bekhtereva ES; Nikolaeva NI; Velmuzhova IA; Koshelev MA
    Spectrochim Acta A Mol Biomol Spectrosc; 2022 Jul; 275():121135. PubMed ID: 35313171
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Frequency measurements and self-broadening of sub-Doppler transitions in the
    Twagirayezu S; Hall GE; Sears TJ
    J Chem Phys; 2018 Oct; 149(15):154308. PubMed ID: 30342448
    [TBL] [Abstract][Full Text] [Related]  

  • 15. High-resolution sub-Doppler Lamb dips of the ν2 fundamental band of H3(+).
    Chen HC; Hsiao CY; Peng JL; Amano T; Shy JT
    Phys Rev Lett; 2012 Dec; 109(26):263002. PubMed ID: 23368556
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Determination of Line Intensities in the nu1 + nu3 Band of SO2 by Applying a Tunable Diode Laser Spectrometer.
    Sumpf B
    J Mol Spectrosc; 1997 Dec; 186(2):249-55. PubMed ID: 9446764
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Comb-locked Lamb-dip spectrometer.
    Gatti D; Gotti R; Gambetta A; Belmonte M; Galzerano G; Laporta P; Marangoni M
    Sci Rep; 2016 Jun; 6():27183. PubMed ID: 27263858
    [TBL] [Abstract][Full Text] [Related]  

  • 18. High-Resolution Infrared Spectrum of H3SiI in the nu1/nu4 Region near 2200 cm-1.
    Cheng J; Wang D; Graner G
    J Mol Spectrosc; 1998 Aug; 190(2):240-7. PubMed ID: 9668016
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Spectroscopic-network-assisted precision spectroscopy and its application to water.
    Tóbiás R; Furtenbacher T; Simkó I; Császár AG; Diouf ML; Cozijn FMJ; Staa JMA; Salumbides EJ; Ubachs W
    Nat Commun; 2020 Apr; 11(1):1708. PubMed ID: 32249848
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The (2-0)
    Kassi S; Lauzin C; Chaillot J; Campargue A
    Phys Chem Chem Phys; 2022 Oct; 24(38):23164-23172. PubMed ID: 36128879
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.