These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

138 related articles for article (PubMed ID: 37622474)

  • 21. Proterozoic ocean redox and biogeochemical stasis.
    Reinhard CT; Planavsky NJ; Robbins LJ; Partin CA; Gill BC; Lalonde SV; Bekker A; Konhauser KO; Lyons TW
    Proc Natl Acad Sci U S A; 2013 Apr; 110(14):5357-62. PubMed ID: 23515332
    [TBL] [Abstract][Full Text] [Related]  

  • 22. The onset of widespread marine red beds and the evolution of ferruginous oceans.
    Song H; Jiang G; Poulton SW; Wignall PB; Tong J; Song H; An Z; Chu D; Tian L; She Z; Wang C
    Nat Commun; 2017 Aug; 8(1):399. PubMed ID: 28855507
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Isotopic reconstruction of iron oxidation-reduction process based on an Archean Ocean analogue.
    Yang X; Guo Q; Boyko V; Avetisyan K; Findlay AJ; Huang F; Wang Z; Chen Z
    Sci Total Environ; 2022 Apr; 817():152609. PubMed ID: 34963590
    [TBL] [Abstract][Full Text] [Related]  

  • 24. What the ~1.4 Ga Xiamaling Formation can and cannot tell us about the mid-Proterozoic ocean.
    Diamond CW; Planavsky NJ; Wang C; Lyons TW
    Geobiology; 2018 May; 16(3):219-236. PubMed ID: 29577549
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Earth's youngest banded iron formation implies ferruginous conditions in the Early Cambrian ocean.
    Li ZQ; Zhang LC; Xue CJ; Zheng MT; Zhu MT; Robbins LJ; Slack JF; Planavsky NJ; Konhauser KO
    Sci Rep; 2018 Jul; 8(1):9970. PubMed ID: 29967405
    [TBL] [Abstract][Full Text] [Related]  

  • 26. A persistently low level of atmospheric oxygen in Earth's middle age.
    Liu XM; Kah LC; Knoll AH; Cui H; Wang C; Bekker A; Hazen RM
    Nat Commun; 2021 Jan; 12(1):351. PubMed ID: 33441548
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Nitrous oxide from chemodenitrification: A possible missing link in the Proterozoic greenhouse and the evolution of aerobic respiration.
    Stanton CL; Reinhard CT; Kasting JF; Ostrom NE; Haslun JA; Lyons TW; Glass JB
    Geobiology; 2018 Nov; 16(6):597-609. PubMed ID: 30133143
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Redox heterogeneity of subsurface waters in the Mesoproterozoic ocean.
    Sperling EA; Rooney AD; Hays L; Sergeev VN; Vorob'eva NG; Sergeeva ND; Selby D; Johnston DT; Knoll AH
    Geobiology; 2014 Sep; 12(5):373-86. PubMed ID: 24889419
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Box models for the evolution of atmospheric oxygen: an update.
    Kasting JF
    Glob Planet Change; 1991; 97():125-31. PubMed ID: 11538092
    [TBL] [Abstract][Full Text] [Related]  

  • 30. The transition to a sulphidic ocean approximately 1.84 billion years ago.
    Poulton SW; Fralick PW; Canfield DE
    Nature; 2004 Sep; 431(7005):173-7. PubMed ID: 15356628
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Theoretical constraints on oxygen and carbon dioxide concentrations in the Precambrian atmosphere.
    Kasting JF
    Precambrian Res; 1987; 34():205-29. PubMed ID: 11542097
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Atmospheric oxygen regulation at low Proterozoic levels by incomplete oxidative weathering of sedimentary organic carbon.
    Daines SJ; Mills BJ; Lenton TM
    Nat Commun; 2017 Feb; 8():14379. PubMed ID: 28148950
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Statistical analysis of iron geochemical data suggests limited late Proterozoic oxygenation.
    Sperling EA; Wolock CJ; Morgan AS; Gill BC; Kunzmann M; Halverson GP; Macdonald FA; Knoll AH; Johnston DT
    Nature; 2015 Jul; 523(7561):451-4. PubMed ID: 26201598
    [TBL] [Abstract][Full Text] [Related]  

  • 34. A record of deep-ocean dissolved O
    Stolper DA; Keller CB
    Nature; 2018 Jan; 553(7688):323-327. PubMed ID: 29310121
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Evolution of Earth-like Extrasolar Planetary Atmospheres: Assessing the Atmospheres and Biospheres of Early Earth Analog Planets with a Coupled Atmosphere Biogeochemical Model.
    Gebauer S; Grenfell JL; Stock JW; Lehmann R; Godolt M; von Paris P; Rauer H
    Astrobiology; 2017 Jan; 17(1):27-54. PubMed ID: 28103105
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Highly Siderophile Elements and Coupled Fe-Os Isotope Signatures in the Temagami Iron Formation, Canada: Possible Signatures of Neoarchean Seawater Chemistry and Earth's Oxygenation History.
    Schulz T; Viehmann S; Hezel DC; Koeberl C; Bau M
    Astrobiology; 2021 Aug; 21(8):924-939. PubMed ID: 34406808
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Triple oxygen isotope constraints on atmospheric O
    Liu P; Liu J; Ji A; Reinhard CT; Planavsky NJ; Babikov D; Najjar RG; Kasting JF
    Proc Natl Acad Sci U S A; 2021 Dec; 118(51):. PubMed ID: 34911756
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Earth's oxygen cycle and the evolution of animal life.
    Reinhard CT; Planavsky NJ; Olson SL; Lyons TW; Erwin DH
    Proc Natl Acad Sci U S A; 2016 Aug; 113(32):8933-8. PubMed ID: 27457943
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Mesoproterozoic surface oxygenation accompanied major sedimentary manganese deposition at 1.4 and 1.1 Ga.
    Spinks SC; Sperling EA; Thorne RL; LaFountain F; White AJR; Armstrong J; Woltering M; Tyler IM
    Geobiology; 2023 Jan; 21(1):28-43. PubMed ID: 36168296
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Using modern low-oxygen marine ecosystems to understand the nitrogen cycle of the Paleo- and Mesoproterozoic oceans.
    Fuchsman CA; Stüeken EE
    Environ Microbiol; 2021 Jun; 23(6):2801-2822. PubMed ID: 32869502
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.