These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

118 related articles for article (PubMed ID: 37622615)

  • 1. Nanopore actuation of a DNA-tracked nanovehicle.
    Si W; Lin X; Wang L; Wu G; Zhang Y; Chen Y; Sha J
    Nanoscale; 2023 Sep; 15(35):14659-14668. PubMed ID: 37622615
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Encoding Manipulation of DNA-Nanoparticle Assembled Nanorobot Using Independently Charged Array Nanopores.
    Si W; Zhu Z; Wu G; Zhang Y; Chen Y; Sha J
    Small Methods; 2022 Aug; 6(8):e2200318. PubMed ID: 35656741
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Precise control of CNT-DNA assembled nanomotor using oppositely charged dual nanopores.
    Ma C; Xu W; Liu W; Xu C; Si W; Sha J
    Nanoscale; 2023 Jul; 15(26):11052-11063. PubMed ID: 37350160
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A Nanoparticle-DNA Assembled Nanorobot Powered by Charge-Tunable Quad-Nanopore System.
    Si W; Yu M; Wu G; Chen C; Sha J; Zhang Y; Chen Y
    ACS Nano; 2020 Nov; 14(11):15349-15360. PubMed ID: 33151055
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Selective Capture and Manipulation of DNA through Double Charged Nanopores.
    Lin X; Chen H; Wu G; Zhao J; Zhang Y; Sha J; Si W
    J Phys Chem Lett; 2024 May; 15(19):5120-5129. PubMed ID: 38709198
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Controlling DNA Fragments Translocation across Nanopores with the Synergic Use of Site-Directed Mutagenesis, pH-Dependent Charge Tuning, and Electroosmotic Flow.
    Mereuta L; Bhatti H; Asandei A; Cimpanu A; Ying YL; Long YT; Luchian T
    ACS Appl Mater Interfaces; 2024 Jul; 16(30):40100-40110. PubMed ID: 39038810
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Controlling Electroosmosis in Nanopores Without Altering the Nanopore Sensing Region.
    Baldelli M; Di Muccio G; Sauciuc A; Morozzo Della Rocca B; Viola F; Balme S; Bonini A; Maglia G; Chinappi M
    Adv Mater; 2024 Aug; 36(33):e2401761. PubMed ID: 38860821
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Conformation Influence of DNA on the Detection Signal through Solid-State Nanopores.
    Liu W; Ma C; Wang H; Sha J
    Langmuir; 2024 May; 40(18):9622-9629. PubMed ID: 38652583
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Spontaneous Translocation of Single-Stranded DNA in Graphene-MoS
    Zou A; Xiu P; Ou X; Zhou R
    J Phys Chem B; 2020 Oct; 124(43):9490-9496. PubMed ID: 33064482
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Characterizing and controlling the motion of ssDNA in a solid-state nanopore.
    Luan B; Martyna G; Stolovitzky G
    Biophys J; 2011 Nov; 101(9):2214-22. PubMed ID: 22067161
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Salt Gradient Control of Translocation Dynamics in a Solid-State Nanopore.
    Leong IW; Tsutsui M; Yokota K; Taniguchi M
    Anal Chem; 2021 Dec; 93(49):16700-16708. PubMed ID: 34860500
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Revealing the mechanism of DNA passing through graphene and boron nitride nanopores.
    Tyagi A; Chu K; Hossain MD; Abidi IH; Lin W; Yan Y; Zhang K; Luo Z
    Nanoscale; 2019 Dec; 11(48):23438-23448. PubMed ID: 31799536
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Spontaneous Transport of Single-Stranded DNA through Graphene-MoS
    Luan B; Zhou R
    ACS Nano; 2018 Apr; 12(4):3886-3891. PubMed ID: 29648440
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Geometrically Induced Selectivity and Unidirectional Electroosmosis in Uncharged Nanopores.
    Di Muccio G; Morozzo Della Rocca B; Chinappi M
    ACS Nano; 2022 Jun; 16(6):8716-8728. PubMed ID: 35587777
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Investigation of entrance effects on particle electrophoretic behavior near a nanopore for resistive pulse sensing.
    Hsu C; Lin CY; Alizadeh A; Daiguji H; Hsu WL
    Electrophoresis; 2021 Nov; 42(21-22):2206-2214. PubMed ID: 34472124
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Electrophoretic Transport of Single-Stranded DNA through a Two Dimensional Nanopore Patterned on an In-Plane Heterostructure.
    Luan B; Kuroda MA
    ACS Nano; 2020 Oct; 14(10):13137-13145. PubMed ID: 32902252
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Theory of Transport-Induced-Charge Electroosmotic Pumping toward Alternating Current Resistive Pulse Sensing.
    Hsu WL; Hwang J; Daiguji H
    ACS Sens; 2018 Nov; 3(11):2320-2326. PubMed ID: 30350951
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Conformational transitions and stop-and-go nanopore transport of single-stranded DNA on charged graphene.
    Shankla M; Aksimentiev A
    Nat Commun; 2014 Oct; 5():5171. PubMed ID: 25296960
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effects of Nanopore Charge Decorations on the Translocation Dynamics of DNA.
    Jou I; Muthukumar M
    Biophys J; 2017 Oct; 113(8):1664-1672. PubMed ID: 29045861
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Slowing single-stranded DNA translocation through a solid-state nanopore by decreasing the nanopore diameter.
    Akahori R; Haga T; Hatano T; Yanagi I; Ohura T; Hamamura H; Iwasaki T; Yokoi T; Anazawa T
    Nanotechnology; 2014 Jul; 25(27):275501. PubMed ID: 24960034
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.