These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
193 related articles for article (PubMed ID: 37622678)
1. Low internal air space in plants with crassulacean acid metabolism may be an anatomical spandrel. Leverett A; Borland AM; Inge EJ; Hartzell S Ann Bot; 2023 Nov; 132(4):811-817. PubMed ID: 37622678 [TBL] [Abstract][Full Text] [Related]
2. Leaf anatomical traits which accommodate the facultative engagement of crassulacean acid metabolism in tropical trees of the genus Clusia. Barrera Zambrano VA; Lawson T; Olmos E; Fernández-García N; Borland AM J Exp Bot; 2014 Jul; 65(13):3513-23. PubMed ID: 24510939 [TBL] [Abstract][Full Text] [Related]
6. Dissecting succulence: Crassulacean acid metabolism and hydraulic capacitance are independent adaptations in Clusia leaves. Leverett A; Hartzell S; Winter K; Garcia M; Aranda J; Virgo A; Smith A; Focht P; Rasmussen-Arda A; Willats WGT; Cowan-Turner D; Borland AM Plant Cell Environ; 2023 May; 46(5):1472-1488. PubMed ID: 36624682 [TBL] [Abstract][Full Text] [Related]
7. Functional constraints of CAM leaf anatomy: tight cell packing is associated with increased CAM function across a gradient of CAM expression. Nelson EA; Sage RF J Exp Bot; 2008; 59(7):1841-50. PubMed ID: 18256047 [TBL] [Abstract][Full Text] [Related]
8. The starch-deficient plastidic PHOSPHOGLUCOMUTASE mutant of the constitutive crassulacean acid metabolism (CAM) species Kalanchoë fedtschenkoi impacts diel regulation and timing of stomatal CO2 responsiveness. Hurtado-Castano N; Atkins E; Barnes J; Boxall SF; Dever LV; Kneřová J; Hartwell J; Cushman JC; Borland AM Ann Bot; 2023 Nov; 132(4):881-894. PubMed ID: 36661206 [TBL] [Abstract][Full Text] [Related]
9. Functional leaf anatomy of plants with crassulacean acid metabolism. Nelson EA; Sage TL; Sage RF Funct Plant Biol; 2005 Jul; 32(5):409-419. PubMed ID: 32689143 [TBL] [Abstract][Full Text] [Related]
10. Photosynthesis-related characteristics of the midrib and the interveinal lamina in leaves of the C3-CAM intermediate plant Mesembryanthemum crystallinum. Kuźniak E; Kornas A; Kaźmierczak A; Rozpądek P; Nosek M; Kocurek M; Zellnig G; Müller M; Miszalski Z Ann Bot; 2016 Jun; 117(7):1141-51. PubMed ID: 27091507 [TBL] [Abstract][Full Text] [Related]
11. Engineering of Crassulacean Acid Metabolism. Schiller K; Bräutigam A Annu Rev Plant Biol; 2021 Jun; 72():77-103. PubMed ID: 33848427 [TBL] [Abstract][Full Text] [Related]
12. Evolution of Crassulacean acid metabolism in response to the environment: past, present, and future. Heyduk K Plant Physiol; 2022 Aug; 190(1):19-30. PubMed ID: 35748752 [TBL] [Abstract][Full Text] [Related]
13. How succulent leaves of Aizoaceae avoid mesophyll conductance limitations of photosynthesis and survive drought. Ripley BS; Abraham T; Klak C; Cramer MD J Exp Bot; 2013 Dec; 64(18):5485-96. PubMed ID: 24127513 [TBL] [Abstract][Full Text] [Related]
14. CAM photosynthesis in Bulnesia retama (Zygophyllaceae), a non-succulent desert shrub from South America. Mok D; Leung A; Searles P; Sage TL; Sage RF Ann Bot; 2023 Nov; 132(4):655-670. PubMed ID: 37625031 [TBL] [Abstract][Full Text] [Related]
15. Are thick leaves, large mesophyll cells and small intercellular air spaces requisites for CAM? Herrera A Ann Bot; 2020 May; 125(6):859-868. PubMed ID: 31970387 [TBL] [Abstract][Full Text] [Related]
16. Peeling back the layers of crassulacean acid metabolism: functional differentiation between Kalanchoë fedtschenkoi epidermis and mesophyll proteomes. Abraham PE; Hurtado Castano N; Cowan-Turner D; Barnes J; Poudel S; Hettich R; Flütsch S; Santelia D; Borland AM Plant J; 2020 Jul; 103(2):869-888. PubMed ID: 32314451 [TBL] [Abstract][Full Text] [Related]
17. CAM photosynthesis: the acid test. Winter K; Smith JAC New Phytol; 2022 Jan; 233(2):599-609. PubMed ID: 34637529 [TBL] [Abstract][Full Text] [Related]