BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

119 related articles for article (PubMed ID: 37622712)

  • 21. Photosynthetic utilization efficiency of absorbed photosynthetically active radiation by Scots pine and birch forest stands in the southern Taiga.
    Molchanov AG
    Tree Physiol; 2000 Nov; 20(17):1137-1148. PubMed ID: 12651489
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Impacts of changing climate on the productivity of Norway spruce dominant stands with a mixture of Scots pine and birch in relation to water availability in southern and northern Finland.
    Ge ZM; Kellomäki S; Peltola H; Zhou X; Wang KY; Väisänen H
    Tree Physiol; 2011 Mar; 31(3):323-38. PubMed ID: 21436231
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Fine root morphological adaptations in Scots pine, Norway spruce and silver birch along a latitudinal gradient in boreal forests.
    Ostonen I; Lõhmus K; Helmisaari HS; Truu J; Meel S
    Tree Physiol; 2007 Nov; 27(11):1627-34. PubMed ID: 17669752
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Living on the Edge: Contrasted Wood-Formation Dynamics in Fagus sylvatica and Pinus sylvestris under Mediterranean Conditions.
    Martinez Del Castillo E; Longares LA; Gričar J; Prislan P; Gil-Pelegrín E; Čufar K; de Luis M
    Front Plant Sci; 2016; 7():370. PubMed ID: 27047534
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Differences in survival and phenotypic traits of curly birch preserved by heterovegetative propagation: a case study from Central-East Europe.
    Sarvašová I; Sedmák R; Sedmáková D; Lukáčik I
    Sci Rep; 2021 Apr; 11(1):8079. PubMed ID: 33850229
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Electrical resistivity tomography: patterns in Betula pendula, Fagus sylvatica, Picea abies and Pinus sylvestris.
    Bär A; Hamacher M; Ganthaler A; Losso A; Mayr S
    Tree Physiol; 2019 Jul; 39(7):1262-1271. PubMed ID: 31070766
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Adaptation of Betula pendula Roth., Pinus sylvestris L., and Larix decidua Mill. to environmental stress caused by tailings waste highly contaminated by trace elements.
    Świątek B; Kraj W; Pietrzykowski M
    Environ Monit Assess; 2023 Dec; 196(1):52. PubMed ID: 38110766
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Responses in growth and emissions of biogenic volatile organic compounds in Scots pine, Norway spruce and silver birch seedlings to different warming treatments in a controlled field experiment.
    Pikkarainen L; Nissinen K; Ghimire RP; Kivimäenpää M; Ikonen VP; Kilpeläinen A; Virjamo V; Yu H; Kirsikka-Aho S; Salminen T; Hirvonen J; Vahimaa T; Luoranen J; Peltola H
    Sci Total Environ; 2022 May; 821():153277. PubMed ID: 35074390
    [TBL] [Abstract][Full Text] [Related]  

  • 29. The effects of heat treatment on some technological properties of Scots pine (Pinus sylvestris L.) wood.
    Korkut S; Akgül M; Dündar T
    Bioresour Technol; 2008 Apr; 99(6):1861-8. PubMed ID: 17482811
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Winter drought impairs xylem phenology, anatomy and growth in Mediterranean Scots pine forests.
    Camarero JJ; Guada G; Sánchez-Salguero R; Cervantes E
    Tree Physiol; 2016 Dec; 36(12):1536-1549. PubMed ID: 27614359
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Nitrate reductase activity in some subarctic species and UV influence in the foliage of Betula pendula Roth. seedlings.
    Krywult M; Turunen M; Sutinen ML; Derome K; Norokorpi Y
    Sci Total Environ; 2002 Feb; 284(1-3):149-55. PubMed ID: 11846159
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Induction of discolored wood in Scots pine (Pinus sylvestris).
    Nilsson M; Wikman S; Eklund L
    Tree Physiol; 2002 Apr; 22(5):331-8. PubMed ID: 11960757
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Effects of environmental conditions on onset of xylem growth in Pinus sylvestris under drought.
    Swidrak I; Gruber A; Kofler W; Oberhuber W
    Tree Physiol; 2011 May; 31(5):483-93. PubMed ID: 21593011
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Limited Growth Recovery after Drought-Induced Forest Dieback in Very Defoliated Trees of Two Pine Species.
    Guada G; Camarero JJ; Sánchez-Salguero R; Cerrillo RM
    Front Plant Sci; 2016; 7():418. PubMed ID: 27066053
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Developmental lignification and seasonal variation in beta-glucosidase and peroxidase activities in xylem of Scots pine, Norway spruce and silver birch.
    Marjamaa K; Lehtonen M; Lundell T; Toikka M; Saranpää P; Fagerstedt KV
    Tree Physiol; 2003 Oct; 23(14):977-86. PubMed ID: 12952784
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Cambial Age Influences PCD Gene Expression during Xylem Development and Heartwood Formation.
    Moshchenskaya YL; Galibina NA; Tarelkina TV; Nikerova KM; Korzhenevsky MA; Semenova LI
    Plants (Basel); 2023 Dec; 12(23):. PubMed ID: 38068707
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Distributions of
    Holiaka D; Yoschenko V; Levchuk S; Kashparov V
    J Environ Radioact; 2020 Oct; 222():106319. PubMed ID: 32565416
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Atmospheric depositions affect the growth patterns of Scots pines (Pinus sylvestris L.)-a long-term cause-effect monitoring study using biomarkers.
    Schulz H; Beck W; Lausch A
    Environ Monit Assess; 2019 Feb; 191(3):159. PubMed ID: 30762135
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Logging residue piles of Norway spruce, Scots pine and silver birch in a clear-cut: Effects on nitrous oxide emissions and soil percolate water nitrogen.
    Törmänen T; Lindroos AJ; Kitunen V; Smolander A
    Sci Total Environ; 2020 Oct; 738():139743. PubMed ID: 32540601
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Cytokinins in the Spring Sap of Curly Birch (Betula pendula f. carelica) and the Non-Curly Form.
    Ahokas H
    J Plant Physiol; 1985 Feb; 118(1):33-9. PubMed ID: 23195929
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.