These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
129 related articles for article (PubMed ID: 37622971)
1. Transhumeral Arm Reaching Motion Prediction through Deep Reinforcement Learning-Based Synthetic Motion Cloning. Ahmed MH; Kutsuzawa K; Hayashibe M Biomimetics (Basel); 2023 Aug; 8(4):. PubMed ID: 37622971 [TBL] [Abstract][Full Text] [Related]
2. Synergy-Space Recurrent Neural Network for Transferable Forearm Motion Prediction from Residual Limb Motion. Ahmed MH; Chai J; Shimoda S; Hayashibe M Sensors (Basel); 2023 Apr; 23(9):. PubMed ID: 37177396 [TBL] [Abstract][Full Text] [Related]
3. fNIRS-Based Upper Limb Motion Intention Recognition Using an Artificial Neural Network for Transhumeral Amputees. Sattar NY; Kausar Z; Usama SA; Farooq U; Shah MF; Muhammad S; Khan R; Badran M Sensors (Basel); 2022 Jan; 22(3):. PubMed ID: 35161473 [TBL] [Abstract][Full Text] [Related]
4. Can We Achieve Intuitive Prosthetic Elbow Control Based on Healthy Upper Limb Motor Strategies? Merad M; de Montalivet É; Touillet A; Martinet N; Roby-Brami A; Jarrassé N Front Neurorobot; 2018; 12():1. PubMed ID: 29456499 [TBL] [Abstract][Full Text] [Related]
5. Continuous joint velocity estimation using CNN-based deep learning for multi-DoF prosthetic wrist for activities of daily living. Meng Z; Kang J Front Neurorobot; 2023; 17():1185052. PubMed ID: 37744085 [TBL] [Abstract][Full Text] [Related]
6. A Multitasking-Oriented Robot Arm Motion Planning Scheme Based on Deep Reinforcement Learning and Twin Synchro-Control. Liu C; Gao J; Bi Y; Shi X; Tian D Sensors (Basel); 2020 Jun; 20(12):. PubMed ID: 32575907 [TBL] [Abstract][Full Text] [Related]
7. Intuitive movement-based prosthesis control enables arm amputees to reach naturally in virtual reality. Segas E; Mick S; Leconte V; Dubois O; Klotz R; Cattaert D; de Rugy A Elife; 2023 Oct; 12():. PubMed ID: 37847150 [TBL] [Abstract][Full Text] [Related]
8. Towards Control of a Transhumeral Prosthesis with EEG Signals. Bandara DSV; Arata J; Kiguchi K Bioengineering (Basel); 2018 Mar; 5(2):. PubMed ID: 29565293 [TBL] [Abstract][Full Text] [Related]
9. Predicting Wrist Joint Angles from the Kinematics of the Arm: Application to the Control of Upper Limb Prostheses. Pérez-González A; Roda-Casanova V; Sabater-Gazulla J Biomimetics (Basel); 2023 May; 8(2):. PubMed ID: 37366814 [TBL] [Abstract][Full Text] [Related]
11. Targeted muscle reinnervation for real-time myoelectric control of multifunction artificial arms. Kuiken TA; Li G; Lock BA; Lipschutz RD; Miller LA; Stubblefield KA; Englehart KB JAMA; 2009 Feb; 301(6):619-28. PubMed ID: 19211469 [TBL] [Abstract][Full Text] [Related]
12. Upper Limb Prosthesis Control: A Hybrid EEG-EMG Scheme for Motion Estimation in Transhumeral Subjects. Bakshi K; Pramanik R; Manjunatha M; Kumar CS Annu Int Conf IEEE Eng Med Biol Soc; 2018 Jul; 2018():2024-2027. PubMed ID: 30440798 [TBL] [Abstract][Full Text] [Related]
13. Upper-Limb Electromyogram Classification of Reaching-to-Grasping Tasks Based on Convolutional Neural Networks for Control of a Prosthetic Hand. Kim KT; Park S; Lim TH; Lee SJ Front Neurosci; 2021; 15():733359. PubMed ID: 34712114 [TBL] [Abstract][Full Text] [Related]
14. Estimation of distal arm joint angles from EMG and shoulder orientation for transhumeral prostheses. Akhtar A; Aghasadeghi N; Hargrove L; Bretl T J Electromyogr Kinesiol; 2017 Aug; 35():86-94. PubMed ID: 28624687 [TBL] [Abstract][Full Text] [Related]
15. Deep reinforcement learning for automated radiation adaptation in lung cancer. Tseng HH; Luo Y; Cui S; Chien JT; Ten Haken RK; Naqa IE Med Phys; 2017 Dec; 44(12):6690-6705. PubMed ID: 29034482 [TBL] [Abstract][Full Text] [Related]
16. Activities of daily living with bionic arm improved by combination training and latching filter in prosthesis control comparison. Paskett MD; Brinton MR; Hansen TC; George JA; Davis TS; Duncan CC; Clark GA J Neuroeng Rehabil; 2021 Feb; 18(1):45. PubMed ID: 33632237 [TBL] [Abstract][Full Text] [Related]
17. Learning from demonstration: Teaching a myoelectric prosthesis with an intact limb via reinforcement learning. Vasan G; Pilarski PM IEEE Int Conf Rehabil Robot; 2017 Jul; 2017():1457-1464. PubMed ID: 28814025 [TBL] [Abstract][Full Text] [Related]
18. Automatic determination of synergies by radial basis function artificial neural networks for the control of a neural prosthesis. Iftime SD; Egsgaard LL; Popović MB IEEE Trans Neural Syst Rehabil Eng; 2005 Dec; 13(4):482-9. PubMed ID: 16425830 [TBL] [Abstract][Full Text] [Related]
19. A motion-classification strategy based on sEMG-EEG signal combination for upper-limb amputees. Li X; Samuel OW; Zhang X; Wang H; Fang P; Li G J Neuroeng Rehabil; 2017 Jan; 14(1):2. PubMed ID: 28061779 [TBL] [Abstract][Full Text] [Related]
20. Synergistic Elbow Control for a Myoelectric Transhumeral Prosthesis. Alshammary NA; Bennett DA; Goldfarb M IEEE Trans Neural Syst Rehabil Eng; 2018 Feb; 26(2):468-476. PubMed ID: 29432114 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]