These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

128 related articles for article (PubMed ID: 37622980)

  • 1. IDSNN: Towards High-Performance and Low-Latency SNN Training via Initialization and Distillation.
    Fan X; Zhang H; Zhang Y
    Biomimetics (Basel); 2023 Aug; 8(4):. PubMed ID: 37622980
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Quantization Framework for Fast Spiking Neural Networks.
    Li C; Ma L; Furber S
    Front Neurosci; 2022; 16():918793. PubMed ID: 35928011
    [TBL] [Abstract][Full Text] [Related]  

  • 3. High-accuracy deep ANN-to-SNN conversion using quantization-aware training framework and calcium-gated bipolar leaky integrate and fire neuron.
    Gao H; He J; Wang H; Wang T; Zhong Z; Yu J; Wang Y; Tian M; Shi C
    Front Neurosci; 2023; 17():1141701. PubMed ID: 36968504
    [TBL] [Abstract][Full Text] [Related]  

  • 4. SSTDP: Supervised Spike Timing Dependent Plasticity for Efficient Spiking Neural Network Training.
    Liu F; Zhao W; Chen Y; Wang Z; Yang T; Jiang L
    Front Neurosci; 2021; 15():756876. PubMed ID: 34803591
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Efficient Processing of Spatio-Temporal Data Streams With Spiking Neural Networks.
    Kugele A; Pfeil T; Pfeiffer M; Chicca E
    Front Neurosci; 2020; 14():439. PubMed ID: 32431592
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Analyzing and Accelerating the Bottlenecks of Training Deep SNNs With Backpropagation.
    Chen R; Li L
    Neural Comput; 2020 Dec; 32(12):2557-2600. PubMed ID: 32946710
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Rethinking the performance comparison between SNNS and ANNS.
    Deng L; Wu Y; Hu X; Liang L; Ding Y; Li G; Zhao G; Li P; Xie Y
    Neural Netw; 2020 Jan; 121():294-307. PubMed ID: 31586857
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Low-Latency Spiking Neural Networks Using Pre-Charged Membrane Potential and Delayed Evaluation.
    Hwang S; Chang J; Oh MH; Min KK; Jang T; Park K; Yu J; Lee JH; Park BG
    Front Neurosci; 2021; 15():629000. PubMed ID: 33679308
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A Noise-Based Novel Strategy for Faster SNN Training.
    Jiang C; Zhang Y
    Neural Comput; 2023 Aug; 35(9):1593-1608. PubMed ID: 37437192
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A Tandem Learning Rule for Effective Training and Rapid Inference of Deep Spiking Neural Networks.
    Wu J; Chua Y; Zhang M; Li G; Li H; Tan KC
    IEEE Trans Neural Netw Learn Syst; 2023 Jan; 34(1):446-460. PubMed ID: 34288879
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Rethinking Pretraining as a Bridge From ANNs to SNNs.
    Lin Y; Hu Y; Ma S; Yu D; Li G
    IEEE Trans Neural Netw Learn Syst; 2024 Jul; 35(7):9054-9067. PubMed ID: 36374892
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Optimizing Deeper Spiking Neural Networks for Dynamic Vision Sensing.
    Kim Y; Panda P
    Neural Netw; 2021 Dec; 144():686-698. PubMed ID: 34662827
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Backpropagation-Based Learning Techniques for Deep Spiking Neural Networks: A Survey.
    Dampfhoffer M; Mesquida T; Valentian A; Anghel L
    IEEE Trans Neural Netw Learn Syst; 2024 Sep; 35(9):11906-11921. PubMed ID: 37027264
    [TBL] [Abstract][Full Text] [Related]  

  • 14. DIET-SNN: A Low-Latency Spiking Neural Network With Direct Input Encoding and Leakage and Threshold Optimization.
    Rathi N; Roy K
    IEEE Trans Neural Netw Learn Syst; 2023 Jun; 34(6):3174-3182. PubMed ID: 34596559
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A TTFS-based energy and utilization efficient neuromorphic CNN accelerator.
    Yu M; Xiang T; P S; Chu KTN; Amornpaisannon B; Tavva Y; Miriyala VPK; Carlson TE
    Front Neurosci; 2023; 17():1121592. PubMed ID: 37214405
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Enabling Spike-Based Backpropagation for Training Deep Neural Network Architectures.
    Lee C; Sarwar SS; Panda P; Srinivasan G; Roy K
    Front Neurosci; 2020; 14():119. PubMed ID: 32180697
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Training much deeper spiking neural networks with a small number of time-steps.
    Meng Q; Yan S; Xiao M; Wang Y; Lin Z; Luo ZQ
    Neural Netw; 2022 Sep; 153():254-268. PubMed ID: 35759953
    [TBL] [Abstract][Full Text] [Related]  

  • 18. SPIDEN: deep Spiking Neural Networks for efficient image denoising.
    Castagnetti A; Pegatoquet A; Miramond B
    Front Neurosci; 2023; 17():1224457. PubMed ID: 37638316
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Progressive Tandem Learning for Pattern Recognition With Deep Spiking Neural Networks.
    Wu J; Xu C; Han X; Zhou D; Zhang M; Li H; Tan KC
    IEEE Trans Pattern Anal Mach Intell; 2022 Nov; 44(11):7824-7840. PubMed ID: 34546918
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A regularization perspective based theoretical analysis for adversarial robustness of deep spiking neural networks.
    Zhang H; Cheng J; Zhang J; Liu H; Wei Z
    Neural Netw; 2023 Aug; 165():164-174. PubMed ID: 37295205
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.