These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
9. Structural basis for differential receptor binding of cholera and Escherichia coli heat-labile toxins: influence of heterologous amino acid substitutions in the cholera B-subunit. Bäckström M; Shahabi V; Johansson S; Teneberg S; Kjellberg A; Miller-Podraza H; Holmgren J; Lebens M Mol Microbiol; 1997 May; 24(3):489-97. PubMed ID: 9179843 [TBL] [Abstract][Full Text] [Related]
10. Crystal structures of cholera toxin in complex with fucosylated receptors point to importance of secondary binding site. Heim JB; Hodnik V; Heggelund JE; Anderluh G; Krengel U Sci Rep; 2019 Aug; 9(1):12243. PubMed ID: 31439922 [TBL] [Abstract][Full Text] [Related]
11. Crystal structure of cholera toxin B-pentamer bound to receptor GM1 pentasaccharide. Merritt EA; Sarfaty S; van den Akker F; L'Hoir C; Martial JA; Hol WG Protein Sci; 1994 Feb; 3(2):166-75. PubMed ID: 8003954 [TBL] [Abstract][Full Text] [Related]
12. Fluorescence analysis of galactose, lactose, and fucose interaction with the cholera toxin B subunit. Mertz JA; McCann JA; Picking WD Biochem Biophys Res Commun; 1996 Sep; 226(1):140-4. PubMed ID: 8806604 [TBL] [Abstract][Full Text] [Related]
13. Unexpected carbohydrate cross-binding by Escherichia coli heat-labile enterotoxin. Recognition of human and rabbit target cell glycoconjugates in comparison with cholera toxin. Karlsson KA; Teneberg S; Angström J; Kjellberg A; Hirst TR; Berström J; Miller-Podraza H Bioorg Med Chem; 1996 Nov; 4(11):1919-28. PubMed ID: 9007276 [TBL] [Abstract][Full Text] [Related]
14. Modifications of cholera toxin subunit B binding to human large intestinal epithelium. An immunohistochemical study. Kirkeby S; Lynge Pedersen AM Microb Pathog; 2018 Nov; 124():332-336. PubMed ID: 30145256 [TBL] [Abstract][Full Text] [Related]
15. Novel GM1 ganglioside-like peptide mimics prevent the association of cholera toxin to human intestinal epithelial cells in vitro. Yu RK; Usuki S; Itokazu Y; Wu HC Glycobiology; 2016 Jan; 26(1):63-73. PubMed ID: 26405107 [TBL] [Abstract][Full Text] [Related]
16. Targeting Multiple Binding Sites on Cholera Toxin B with Glycomimetic Polymers Promotes the Formation of Protein-Polymer Aggregates. Youn G; Cervin J; Yu X; Bhatia SR; Yrlid U; Sampson NS Biomacromolecules; 2020 Dec; 21(12):4878-4887. PubMed ID: 32960582 [TBL] [Abstract][Full Text] [Related]
17. Binding of fluorescently labeled cholera toxin subunit B to glycolipids in the human submandibular gland and inhibition of binding by periodate oxidation and by galactose. Kirkeby S Biotech Histochem; 2016; 91(1):1-8. PubMed ID: 26472148 [TBL] [Abstract][Full Text] [Related]
18. Grape extracts inhibit multiple events in the cell biology of cholera intoxication. Reddy S; Taylor M; Zhao M; Cherubin P; Geden S; Ray S; Francis D; Teter K PLoS One; 2013; 8(9):e73390. PubMed ID: 24039929 [TBL] [Abstract][Full Text] [Related]
19. Conformational changes in cholera toxin B subunit-ganglioside GM1 complexes are elicited by environmental pH and evoke changes in membrane structure. McCann JA; Mertz JA; Czworkowski J; Picking WD Biochemistry; 1997 Jul; 36(30):9169-78. PubMed ID: 9230049 [TBL] [Abstract][Full Text] [Related]
20. Monoclonal immunoglobulin A antibodies directed against cholera toxin prevent the toxin-induced chloride secretory response and block toxin binding to intestinal epithelial cells in vitro. Apter FM; Lencer WI; Finkelstein RA; Mekalanos JJ; Neutra MR Infect Immun; 1993 Dec; 61(12):5271-8. PubMed ID: 7693598 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]