These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
210 related articles for article (PubMed ID: 37623673)
61. Custom design and biomechanical analysis of 3D-printed PEEK rib prostheses. Kang J; Wang L; Yang C; Wang L; Yi C; He J; Li D Biomech Model Mechanobiol; 2018 Aug; 17(4):1083-1092. PubMed ID: 29730771 [TBL] [Abstract][Full Text] [Related]
62. Evaluating Osseointegration Into a Deeply Porous Titanium Scaffold: A Biomechanical Comparison With PEEK and Allograft. Guyer RD; Abitbol JJ; Ohnmeiss DD; Yao C Spine (Phila Pa 1976); 2016 Oct; 41(19):E1146-E1150. PubMed ID: 27135643 [TBL] [Abstract][Full Text] [Related]
63. Effect of different biocompatible implant materials on the mechanical stability of dental implants under excessive oblique load. Bataineh K; Al Janaideh M Clin Implant Dent Relat Res; 2019 Dec; 21(6):1206-1217. PubMed ID: 31670872 [TBL] [Abstract][Full Text] [Related]
64. [Three-dimensional finite element analysis of different framework materials in implant-supported fixed mandibular prosthesis]. Yu WQ; Li XQ; Chen SY; Ma XN; Xu X Zhonghua Kou Qiang Yi Xue Za Zhi; 2021 Feb; 56(2):190-195. PubMed ID: 33557504 [No Abstract] [Full Text] [Related]
65. Powder Bed Fusion Versus Material Extrusion: A Comparative Case Study on Polyether-Ether-Ketone Cranial Implants. Liu Y; Yi N; Davies R; McCutchion P; Ghita O 3D Print Addit Manuf; 2023 Oct; 10(5):941-954. PubMed ID: 37886420 [TBL] [Abstract][Full Text] [Related]
66. Mechanical Properties of 3D-Printed PEEK/HA Composite Filaments. Kang J; Zheng J; Hui Y; Li D Polymers (Basel); 2022 Oct; 14(20):. PubMed ID: 36297871 [TBL] [Abstract][Full Text] [Related]
67. Functional design and biomechanical evaluation of 3D printing PEEK flexible implant for chest wall reconstruction. Kang J; Tian Y; Zheng J; Lu D; Cai K; Wang L; Li D Comput Methods Programs Biomed; 2022 Oct; 225():107105. PubMed ID: 36108412 [TBL] [Abstract][Full Text] [Related]
68. Research on the Fused Deposition Modeling of Polyether Ether Ketone. Gao R; Xie J; Yang J; Zhuo C; Fu J; Zhao P Polymers (Basel); 2021 Jul; 13(14):. PubMed ID: 34301101 [TBL] [Abstract][Full Text] [Related]
69. Do Surface Porosity and Pore Size Influence Mechanical Properties and Cellular Response to PEEK? Torstrick FB; Evans NT; Stevens HY; Gall K; Guldberg RE Clin Orthop Relat Res; 2016 Nov; 474(11):2373-2383. PubMed ID: 27154533 [TBL] [Abstract][Full Text] [Related]
70. Additive manufactured polyether-ether-ketone composite scaffolds with hydroxyapatite filler and porous structure promoted the integration with soft tissue. Sun C; Zhao H; Wang L; Zhang J; Zheng J; Yang Z; Huang L; Wang L; Liu C; Li D; Li Q Biomater Adv; 2022 Oct; 141():213119. PubMed ID: 36152523 [TBL] [Abstract][Full Text] [Related]
71. Mesh Ti6Al4V Material Manufactured by Selective Laser Melting (SLM) as a Promising Intervertebral Fusion Cage. Przekora A; Kazimierczak P; Wojcik M; Chodorski E; Kropiwnicki J Int J Mol Sci; 2022 Apr; 23(7):. PubMed ID: 35409345 [TBL] [Abstract][Full Text] [Related]
72. Feasibility of 3D-Printed Locking Compression Plates with Polyether Ether Ketone (PEEK) in Tibial Comminuted Diaphyseal Fractures. Chung HJ; Lee HB; Park KM; Jung TG; Kim SB; Lee BG; Kim WC; Lee JK Polymers (Basel); 2023 Jul; 15(14):. PubMed ID: 37514445 [TBL] [Abstract][Full Text] [Related]
73. Mechanical Properties Optimization of Poly-Ether-Ether-Ketone via Fused Deposition Modeling. Deng X; Zeng Z; Peng B; Yan S; Ke W Materials (Basel); 2018 Jan; 11(2):. PubMed ID: 29385756 [TBL] [Abstract][Full Text] [Related]
74. Complete sternal cleft individualized repair using a 3D-printed polyether ether ketone model: a case report. Zhang G; Wang L; Dang P; Yan Y Eur Heart J Case Rep; 2023 Dec; 7(12):ytad528. PubMed ID: 38116479 [TBL] [Abstract][Full Text] [Related]
75. Osteoconductive Enhancement of Polyether Ether Ketone: A Mild Covalent Surface Modification Approach. Kassick AJ; Yerneni SS; Gottlieb E; Cartieri F; Peng Y; Mao G; Kharlamov A; Miller MC; Xu C; Oh M; Kowalewski T; Cheng B; Campbell PG; Averick S ACS Appl Bio Mater; 2018 Oct; 1(4):1047-1055. PubMed ID: 34996145 [TBL] [Abstract][Full Text] [Related]
76. Surface modification of Polyether-ether-ketone for enhanced cell response: a chemical etching approach. Dua R; Sharufa O; Terry J; Dunn W; Khurana I; Vadivel J; Zhang Y; Donahue HJ Front Bioeng Biotechnol; 2023; 11():1202499. PubMed ID: 37744253 [TBL] [Abstract][Full Text] [Related]
77. Bionic design and verification of 3D printed PEEK costal cartilage prosthesis. Zhang C; Wang L; Kang J; Fuentes OM; Li D J Mech Behav Biomed Mater; 2020 Mar; 103():103561. PubMed ID: 32090953 [TBL] [Abstract][Full Text] [Related]
78. Surface Treatments of PEEK for Osseointegration to Bone. Dondani JR; Iyer J; Tran SD Biomolecules; 2023 Mar; 13(3):. PubMed ID: 36979399 [TBL] [Abstract][Full Text] [Related]
79. The Direct 3D Printing of Functional PEEK/Hydroxyapatite Composites via a Fused Filament Fabrication Approach. Rodzeń K; Sharma PK; McIlhagger A; Mokhtari M; Dave F; Tormey D; Sherlock R; Meenan BJ; Boyd A Polymers (Basel); 2021 Feb; 13(4):. PubMed ID: 33673299 [TBL] [Abstract][Full Text] [Related]
80. Modified porous microstructure for improving bone compatibility of poly-ether-ether-ketone. Wong KI; Zhong Y; Li D; Cheng Z; Yu Z; Wei M J Mech Behav Biomed Mater; 2021 Aug; 120():104541. PubMed ID: 34062372 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]