These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

152 related articles for article (PubMed ID: 37623756)

  • 1. Permselectivity and Ionic Conductivity Study of Na
    Flack R; Aixalà-Perelló A; Pedico A; Saadi K; Lamberti A; Zitoun D
    Membranes (Basel); 2023 Jul; 13(8):. PubMed ID: 37623756
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Direct Measurement of Crossover and Interfacial Resistance of Ion-Exchange Membranes in All-Vanadium Redox Flow Batteries.
    Ashraf Gandomi Y; Aaron DS; Nolan ZB; Ahmadi A; Mench MM
    Membranes (Basel); 2020 Jun; 10(6):. PubMed ID: 32570827
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Two-Dimensional Materials Applied in Membranes of Redox Flow Battery.
    He M; Guan M; Zhan R; Zhou K; Fu H; Wang X; Zhong F; Ding M; Jia C
    Chem Asian J; 2023 Feb; 18(3):e202201152. PubMed ID: 36534005
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Ex-Situ Evaluation of Commercial Polymer Membranes for Vanadium Redox Flow Batteries (VRFBs).
    Zhao N; Riley H; Song C; Jiang Z; Tsay KC; Neagu R; Shi Z
    Polymers (Basel); 2021 Mar; 13(6):. PubMed ID: 33802914
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Exclusively Proton Conductive Membranes Based on Reduced Graphene Oxide Polymer Composites.
    Shinde DB; Vlassiouk IV; Talipov MR; Smirnov SN
    ACS Nano; 2019 Nov; 13(11):13136-13143. PubMed ID: 31647220
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Specific ion effects on membrane potential and the permselectivity of ion exchange membranes.
    Geise GM; Cassady HJ; Paul DR; Logan BE; Hickner MA
    Phys Chem Chem Phys; 2014 Oct; 16(39):21673-81. PubMed ID: 25198913
    [TBL] [Abstract][Full Text] [Related]  

  • 7. 3D Graphene-Ni Foam as an Advanced Electrode for High-Performance Nonaqueous Redox Flow Batteries.
    Lee K; Lee J; Kwon KW; Park MS; Hwang JH; Kim KJ
    ACS Appl Mater Interfaces; 2017 Jul; 9(27):22502-22508. PubMed ID: 28631481
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Synthesis and Characterization of Lithium-Conducting Composite Polymer-Ceramic Membranes for Use in Nonaqueous Redox Flow Batteries.
    Ashraf Gandomi Y; Krasnikova IV; Akhmetov NO; Ovsyannikov NA; Pogosova MA; Matteucci NJ; Mallia CT; Neyhouse BJ; Fenton AM; Brushett FR; Stevenson KJ
    ACS Appl Mater Interfaces; 2021 Nov; 13(45):53746-53757. PubMed ID: 34734523
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Ion-Selective Microporous Polymer Membranes with Hydrogen-Bond and Salt-Bridge Networks for Aqueous Organic Redox Flow Batteries.
    Wang A; Tan R; Liu D; Lu J; Wei X; Alvarez-Fernandez A; Ye C; Breakwell C; Guldin S; Kucernak AR; Jelfs KE; Brandon NP; McKeown NB; Song Q
    Adv Mater; 2023 Mar; 35(12):e2210098. PubMed ID: 36634684
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Investigation of Iron(III) Tetraphenylporphyrin as a Redox Flow Battery Anolyte: Unexpected Side Reactivity with the Electrolyte.
    Mitchell NH; Elgrishi N
    J Phys Chem C Nanomater Interfaces; 2023 Jun; 127(23):10938-10946. PubMed ID: 37342204
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A Physical Organic Chemistry Approach to Developing Cyclopropenium-Based Energy Storage Materials for Redox Flow Batteries.
    Walser-Kuntz R; Yan Y; Sigman M; Sanford MS
    Acc Chem Res; 2023 May; 56(10):1239-1250. PubMed ID: 37094181
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Carbon Materials as Positive Electrodes in Bromine-Based Flow Batteries.
    Popat Y; Trudgeon D; Zhang C; Walsh FC; Connor P; Li X
    Chempluschem; 2022 Jan; 87(1):e202100441. PubMed ID: 35023636
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Self-Assembled, Redox-Active Graphene Electrodes for High-Performance Energy Storage Devices.
    Liu T; Kavian R; Kim I; Lee SW
    J Phys Chem Lett; 2014 Dec; 5(24):4324-30. PubMed ID: 26273982
    [TBL] [Abstract][Full Text] [Related]  

  • 14. High Energy Density, Asymmetric, Nonaqueous Redox Flow Batteries without a Supporting Electrolyte.
    Yan Y; Sitaula P; Odom SA; Vaid TP
    ACS Appl Mater Interfaces; 2022 Oct; ():. PubMed ID: 36315441
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Porphyrin-Based Symmetric Redox-Flow Batteries towards Cold-Climate Energy Storage.
    Ma T; Pan Z; Miao L; Chen C; Han M; Shang Z; Chen J
    Angew Chem Int Ed Engl; 2018 Mar; 57(12):3158-3162. PubMed ID: 29363241
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Layer-by-layer modification of cation exchange membranes controls ion selectivity and water splitting.
    Abdu S; Martí-Calatayud MC; Wong JE; García-Gabaldón M; Wessling M
    ACS Appl Mater Interfaces; 2014 Feb; 6(3):1843-54. PubMed ID: 24401042
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Acid Pretreatment to Enhance Proton Transport of a Polysulfone-Polyvinylpyrrolidone Membrane for Application in Vanadium Redox Flow Batteries.
    Wu C; Zhang J; Lu S; Xiang Y; Jiang SP
    Chempluschem; 2018 Oct; 83(10):909-914. PubMed ID: 31950611
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Thermodynamic Interactions as a Descriptor of Cross-Over in Nonaqueous Redox Flow Battery Membranes.
    McCormack PM; Koenig GM; Geise GM
    ACS Appl Mater Interfaces; 2021 Oct; 13(41):49331-49339. PubMed ID: 34609838
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Permselectivity of Cation Exchange Membranes Modified by Polyaniline.
    Falina I; Loza N; Loza S; Titskaya E; Romanyuk N
    Membranes (Basel); 2021 Mar; 11(3):. PubMed ID: 33806737
    [TBL] [Abstract][Full Text] [Related]  

  • 20. An Fe
    Tsitovich PB; Kosswattaarachchi AM; Crawley MR; Tittiris TY; Cook TR; Morrow JR
    Chemistry; 2017 Nov; 23(61):15327-15331. PubMed ID: 28929548
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.