These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

158 related articles for article (PubMed ID: 37624227)

  • 1. Infrastructure tools to support an effective Radiation Oncology Learning Health System.
    Kapoor R; Sleeman WC; Ghosh P; Palta J
    J Appl Clin Med Phys; 2023 Oct; 24(10):e14127. PubMed ID: 37624227
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The radiation oncology ontology (ROO): Publishing linked data in radiation oncology using semantic web and ontology techniques.
    Traverso A; van Soest J; Wee L; Dekker A
    Med Phys; 2018 Oct; 45(10):e854-e862. PubMed ID: 30144092
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Multi-Ontology Refined Embeddings (MORE): A hybrid multi-ontology and corpus-based semantic representation model for biomedical concepts.
    Jiang S; Wu W; Tomita N; Ganoe C; Hassanpour S
    J Biomed Inform; 2020 Nov; 111():103581. PubMed ID: 33010425
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Automated ontology generation framework powered by linked biomedical ontologies for disease-drug domain.
    Alobaidi M; Malik KM; Hussain M
    Comput Methods Programs Biomed; 2018 Oct; 165():117-128. PubMed ID: 30337066
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Labeling for Big Data in radiation oncology: The Radiation Oncology Structures ontology.
    Bibault JE; Zapletal E; Rance B; Giraud P; Burgun A
    PLoS One; 2018; 13(1):e0191263. PubMed ID: 29351341
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Toward a view-oriented approach for aligning RDF-based biomedical repositories.
    Anguita A; García-Remesal M; de la Iglesia D; Graf N; Maojo V
    Methods Inf Med; 2015; 54(1):50-5. PubMed ID: 24777240
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Linked open data-based framework for automatic biomedical ontology generation.
    Alobaidi M; Malik KM; Sabra S
    BMC Bioinformatics; 2018 Sep; 19(1):319. PubMed ID: 30200874
    [TBL] [Abstract][Full Text] [Related]  

  • 8. HPO2Vec+: Leveraging heterogeneous knowledge resources to enrich node embeddings for the Human Phenotype Ontology.
    Shen F; Peng S; Fan Y; Wen A; Liu S; Wang Y; Wang L; Liu H
    J Biomed Inform; 2019 Aug; 96():103246. PubMed ID: 31255713
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Text mining-based word representations for biomedical data analysis and protein-protein interaction networks in machine learning tasks.
    Alachram H; Chereda H; Beißbarth T; Wingender E; Stegmaier P
    PLoS One; 2021; 16(10):e0258623. PubMed ID: 34653224
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Knowledge Graph Embeddings for ICU readmission prediction.
    Carvalho RMS; Oliveira D; Pesquita C
    BMC Med Inform Decis Mak; 2023 Jan; 23(1):12. PubMed ID: 36658526
    [TBL] [Abstract][Full Text] [Related]  

  • 11. mOWL: Python library for machine learning with biomedical ontologies.
    Zhapa-Camacho F; Kulmanov M; Hoehndorf R
    Bioinformatics; 2023 Jan; 39(1):. PubMed ID: 36534832
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Biomedical ontology alignment: an approach based on representation learning.
    Kolyvakis P; Kalousis A; Smith B; Kiritsis D
    J Biomed Semantics; 2018 Aug; 9(1):21. PubMed ID: 30111369
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Developing Bayesian networks from a dependency-layered ontology: A proof-of-concept in radiation oncology.
    Kalet AM; Doctor JN; Gennari JH; Phillips MH
    Med Phys; 2017 Aug; 44(8):4350-4359. PubMed ID: 28500765
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Matching biomedical ontologies with GCN-based feature propagation.
    Wang P; Zou S; Liu J; Ke W
    Math Biosci Eng; 2022 Jun; 19(8):8479-8504. PubMed ID: 35801474
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Evolving knowledge graph similarity for supervised learning in complex biomedical domains.
    Sousa RT; Silva S; Pesquita C
    BMC Bioinformatics; 2020 Jan; 21(1):6. PubMed ID: 31900127
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Aggregating the syntactic and semantic similarity of healthcare data towards their transformation to HL7 FHIR through ontology matching.
    Kiourtis A; Nifakos S; Mavrogiorgou A; Kyriazis D
    Int J Med Inform; 2019 Dec; 132():104002. PubMed ID: 31629311
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The future of Cochrane Neonatal.
    Soll RF; Ovelman C; McGuire W
    Early Hum Dev; 2020 Nov; 150():105191. PubMed ID: 33036834
    [TBL] [Abstract][Full Text] [Related]  

  • 18. COS: A new MeSH term embedding incorporating corpus, ontology, and semantic predications.
    Ding J; Jin W
    PLoS One; 2021; 16(5):e0251094. PubMed ID: 33945566
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Folic acid supplementation and malaria susceptibility and severity among people taking antifolate antimalarial drugs in endemic areas.
    Crider K; Williams J; Qi YP; Gutman J; Yeung L; Mai C; Finkelstain J; Mehta S; Pons-Duran C; Menéndez C; Moraleda C; Rogers L; Daniels K; Green P
    Cochrane Database Syst Rev; 2022 Feb; 2(2022):. PubMed ID: 36321557
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A mobile health monitoring-and-treatment system based on integration of the SSN sensor ontology and the HL7 FHIR standard.
    El-Sappagh S; Ali F; Hendawi A; Jang JH; Kwak KS
    BMC Med Inform Decis Mak; 2019 May; 19(1):97. PubMed ID: 31077222
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.