These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
22. Nanoscale Membrane Budding Induced by CTxB and Detected via Polarized Localization Microscopy. Kabbani AM; Kelly CV Biophys J; 2017 Oct; 113(8):1795-1806. PubMed ID: 29045873 [TBL] [Abstract][Full Text] [Related]
23. Silicon dioxide nanoparticle exposure affects small intestine function in an in vitro model. Guo Z; Martucci NJ; Liu Y; Yoo E; Tako E; Mahler GJ Nanotoxicology; 2018 Jun; 12(5):485-508. PubMed ID: 29668341 [TBL] [Abstract][Full Text] [Related]
24. Silicon dioxide nanoparticles induce insulin resistance through endoplasmic reticulum stress and generation of reactive oxygen species. Hu H; Fan X; Guo Q; Wei X; Yang D; Zhang B; Liu J; Wu Q; Oh Y; Feng Y; Chen K; Hou L; Gu N Part Fibre Toxicol; 2019 Nov; 16(1):41. PubMed ID: 31699096 [TBL] [Abstract][Full Text] [Related]
25. Preparation and evaluation of chitosan nanoparticles containing CtxB antigen against Vibrio cholera. Tabrizi NM; Amani J; Ebrahimzadeh M; Nazarian S; Kazemi R; Almasian P Microb Pathog; 2018 Nov; 124():170-177. PubMed ID: 30138759 [TBL] [Abstract][Full Text] [Related]
26. Catastrophic inflammatory death of monocytes and macrophages by overtaking of a critical dose of endocytosed synthetic amorphous silica nanoparticles/serum protein complexes. Fedeli C; Selvestrel F; Tavano R; Segat D; Mancin F; Papini E Nanomedicine (Lond); 2013 Jul; 8(7):1101-26. PubMed ID: 23237027 [TBL] [Abstract][Full Text] [Related]
27. Fusion-expressed CtxB-TcpA-C-CPE improves both systemic and mucosal humoral and T-cell responses against cholera in mice. Souod N; Kargar M; Hoseini MH; Jafarinia M Microb Pathog; 2021 Aug; 157():104978. PubMed ID: 34022352 [TBL] [Abstract][Full Text] [Related]
28. Effect of silica and gold nanoparticles on macrophage proliferation, activation markers, cytokine production, and phagocytosis in vitro. Bancos S; Stevens DL; Tyner KM Int J Nanomedicine; 2015; 10():183-206. PubMed ID: 25565813 [TBL] [Abstract][Full Text] [Related]
29. Deciphering the mechanisms of cellular uptake of engineered nanoparticles by accurate evaluation of internalization using imaging flow cytometry. Vranic S; Boggetto N; Contremoulins V; Mornet S; Reinhardt N; Marano F; Baeza-Squiban A; Boland S Part Fibre Toxicol; 2013 Feb; 10():2. PubMed ID: 23388071 [TBL] [Abstract][Full Text] [Related]
30. Reduction in oral immunogenicity of cholera toxin B subunit by N-terminal peptide addition. Dertzbaugh MT; Elson CO Infect Immun; 1993 Feb; 61(2):384-90. PubMed ID: 8423068 [TBL] [Abstract][Full Text] [Related]
31. Clathrin and caveolin-1 expression in primary pigmented rabbit conjunctival epithelial cells: role in PLGA nanoparticle endocytosis. Qaddoumi MG; Gukasyan HJ; Davda J; Labhasetwar V; Kim KJ; Lee VH Mol Vis; 2003 Oct; 9():559-68. PubMed ID: 14566223 [TBL] [Abstract][Full Text] [Related]
32. Mechanism of cholera toxin action on a polarized human intestinal epithelial cell line: role of vesicular traffic. Lencer WI; Delp C; Neutra MR; Madara JL J Cell Biol; 1992 Jun; 117(6):1197-1209. PubMed ID: 1318883 [TBL] [Abstract][Full Text] [Related]
33. Ubiquitin fusion enhances cholera toxin B subunit expression in transgenic plants and the plant-expressed protein binds GM1 receptors more efficiently. Mishra S; Yadav DK; Tuli R J Biotechnol; 2006 Dec; 127(1):95-108. PubMed ID: 16843564 [TBL] [Abstract][Full Text] [Related]
34. Cellular Uptake of Silica and Gold Nanoparticles Induces Early Activation of Nuclear Receptor NR4A1. Sousa de Almeida M; Taladriz-Blanco P; Drasler B; Balog S; Yajan P; Petri-Fink A; Rothen-Rutishauser B Nanomaterials (Basel); 2022 Feb; 12(4):. PubMed ID: 35215018 [TBL] [Abstract][Full Text] [Related]
35. Glycolipid Crosslinking Is Required for Cholera Toxin to Partition Into and Stabilize Ordered Domains. Raghunathan K; Wong TH; Chinnapen DJ; Lencer WI; Jobling MG; Kenworthy AK Biophys J; 2016 Dec; 111(12):2547-2550. PubMed ID: 27914621 [TBL] [Abstract][Full Text] [Related]
36. Size and surface modification of silica nanoparticles affect the severity of lung toxicity by modulating endosomal ROS generation in macrophages. Inoue M; Sakamoto K; Suzuki A; Nakai S; Ando A; Shiraki Y; Nakahara Y; Omura M; Enomoto A; Nakase I; Sawada M; Hashimoto N Part Fibre Toxicol; 2021 Jun; 18(1):21. PubMed ID: 34134732 [TBL] [Abstract][Full Text] [Related]
37. Binding efficiencies of carbohydrate ligands with different genotypes of cholera toxin B: molecular modeling, dynamics and docking simulation studies. Fazil MH; Kumar S; Farmer R; Pandey HP; Singh DV J Mol Model; 2012 Jan; 18(1):1-10. PubMed ID: 21409571 [TBL] [Abstract][Full Text] [Related]
38. Cellular Response to Titanium Dioxide Nanoparticles in Intestinal Epithelial Caco-2 Cells is Dependent on Endocytosis-Associated Structures and Mediated by EGFR. Krüger K; Schrader K; Klempt M Nanomaterials (Basel); 2017 Apr; 7(4):. PubMed ID: 28387727 [TBL] [Abstract][Full Text] [Related]
39. Chemical validation of molecular mimicry: interaction of cholera toxin with Campylobacter lipooligosaccharides. Usuki S; Pajaniappan M; Thompson SA; Yu RK Glycoconj J; 2007 Apr; 24(2-3):167-80. PubMed ID: 17226101 [TBL] [Abstract][Full Text] [Related]
40. Intranasal immunization with recombinant toxin-coregulated pilus and cholera toxin B subunit protects rabbits against Vibrio cholerae O1 challenge. Kundu J; Mazumder R; Srivastava R; Srivastava BS FEMS Immunol Med Microbiol; 2009 Jul; 56(2):179-84. PubMed ID: 19453752 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]