BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

183 related articles for article (PubMed ID: 37624755)

  • 1. Large-Scale and Site-Specific Mapping of the Murine Brain
    Suttapitugsakul S; Matsumoto Y; Aryal RP; Cummings RD
    Anal Chem; 2023 Sep; 95(36):13423-13430. PubMed ID: 37624755
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Systems analysis of singly and multiply O-glycosylated peptides in the human serum glycoproteome via EThcD and HCD mass spectrometry.
    Zhang Y; Xie X; Zhao X; Tian F; Lv J; Ying W; Qian X
    J Proteomics; 2018 Jan; 170():14-27. PubMed ID: 28970103
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Global O-glycoproteome enrichment and analysis enabled by a combinatorial enzymatic workflow.
    Kang T; Budhraja R; Kim J; Joshi N; Garapati K; Pandey A
    Cell Rep Methods; 2024 Apr; 4(4):100744. PubMed ID: 38582075
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A Broad-Specificity
    Vainauskas S; Guntz H; McLeod E; McClung C; Ruse C; Shi X; Taron CH
    Anal Chem; 2022 Jan; 94(2):1060-1069. PubMed ID: 34962767
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Electron-Transfer/Higher-Energy Collision Dissociation (EThcD)-Enabled Intact Glycopeptide/Glycoproteome Characterization.
    Yu Q; Wang B; Chen Z; Urabe G; Glover MS; Shi X; Guo LW; Kent KC; Li L
    J Am Soc Mass Spectrom; 2017 Sep; 28(9):1751-1764. PubMed ID: 28695533
    [TBL] [Abstract][Full Text] [Related]  

  • 6. In-depth Site-specific Analysis of N-glycoproteome in Human Cerebrospinal Fluid and Glycosylation Landscape Changes in Alzheimer's Disease.
    Chen Z; Yu Q; Yu Q; Johnson J; Shipman R; Zhong X; Huang J; Asthana S; Carlsson C; Okonkwo O; Li L
    Mol Cell Proteomics; 2021; 20():100081. PubMed ID: 33862227
    [TBL] [Abstract][Full Text] [Related]  

  • 7. In-Depth Site-Specific O-Glycosylation Analysis of Glycoproteins and Endogenous Peptides in Cerebrospinal Fluid (CSF) from Healthy Individuals, Mild Cognitive Impairment (MCI), and Alzheimer's Disease (AD) Patients.
    Chen Z; Wang D; Yu Q; Johnson J; Shipman R; Zhong X; Huang J; Yu Q; Zetterberg H; Asthana S; Carlsson C; Okonkwo O; Li L
    ACS Chem Biol; 2022 Nov; 17(11):3059-3068. PubMed ID: 34964596
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Ultraviolet Photodissociation Permits Comprehensive Characterization of
    Helms A; Escobar EE; Vainauskas S; Taron CH; Brodbelt JS
    Anal Chem; 2023 Jun; 95(24):9280-9287. PubMed ID: 37290223
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Glycopeptide-Centric Approaches for the Characterization of Microbial Glycoproteomes.
    Scott NE
    Methods Mol Biol; 2022; 2456():153-171. PubMed ID: 35612741
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Human urinary glycoproteomics; attachment site specific analysis of N- and O-linked glycosylations by CID and ECD.
    Halim A; Nilsson J; Rüetschi U; Hesse C; Larson G
    Mol Cell Proteomics; 2012 Apr; 11(4):M111.013649. PubMed ID: 22171320
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Deciphering
    Riley NM; Bertozzi CR
    Mol Omics; 2022 Dec; 18(10):908-922. PubMed ID: 36373229
    [No Abstract]   [Full Text] [Related]  

  • 12. GlycoHybridSeq: Automated Identification of N-Linked Glycopeptides Using Electron Transfer/High-Energy Collision Dissociation (EThcD).
    Zhang R; Zhu J; Lubman DM; Mechref Y; Tang H
    J Proteome Res; 2021 Jun; 20(6):3345-3352. PubMed ID: 34010560
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Optimal Dissociation Methods Differ for
    Riley NM; Malaker SA; Driessen MD; Bertozzi CR
    J Proteome Res; 2020 Aug; 19(8):3286-3301. PubMed ID: 32500713
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Quantitative mapping of the in vivo O-GalNAc glycoproteome in mouse tissues identifies GalNAc-T2 O-glycosites in metabolic disorder.
    Yang W; Tian E; Chernish A; McCluggage P; Dalal K; Lara A; Ten Hagen KG; Tabak LA
    Proc Natl Acad Sci U S A; 2023 Oct; 120(43):e2303703120. PubMed ID: 37862385
    [TBL] [Abstract][Full Text] [Related]  

  • 15. [Recent advances in glycopeptide enrichment and mass spectrometry data interpretation approaches for glycoproteomics analyses].
    Liu L; Qin H; Ye M
    Se Pu; 2021 Oct; 39(10):1045-1054. PubMed ID: 34505426
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The Complexity and Dynamics of the Tissue Glycoproteome Associated With Prostate Cancer Progression.
    Kawahara R; Recuero S; Srougi M; Leite KRM; Thaysen-Andersen M; Palmisano G
    Mol Cell Proteomics; 2021; 20():100026. PubMed ID: 33127837
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Characterization of the O-Glycoproteome of Tannerella forsythia.
    Veith PD; Scott NE; Reynolds EC
    mSphere; 2021 Oct; 6(5):e0064921. PubMed ID: 34523981
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Capturing site-specific heterogeneity with large-scale N-glycoproteome analysis.
    Riley NM; Hebert AS; Westphall MS; Coon JJ
    Nat Commun; 2019 Mar; 10(1):1311. PubMed ID: 30899004
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Mapping the O-glycoproteome using site-specific extraction of O-linked glycopeptides (EXoO).
    Yang W; Ao M; Hu Y; Li QK; Zhang H
    Mol Syst Biol; 2018 Nov; 14(11):e8486. PubMed ID: 30459171
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Improved online LC-MS/MS identification of O-glycosites by EThcD fragmentation, chemoenzymatic reaction, and SPE enrichment.
    Yang S; Wang Y; Mann M; Wang Q; Tian E; Zhang L; Cipollo JF; Ten Hagen KG; Tabak LA
    Glycoconj J; 2021 Apr; 38(2):145-156. PubMed ID: 33068214
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.