BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

201 related articles for article (PubMed ID: 37625010)

  • 1. Evaluating Scalable Supervised Learning for Synthesize-on-Demand Chemical Libraries.
    Alnammi M; Liu S; Ericksen SS; Ananiev GE; Voter AF; Guo S; Keck JL; Hoffmann FM; Wildman SA; Gitter A
    J Chem Inf Model; 2023 Sep; 63(17):5513-5528. PubMed ID: 37625010
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Machine Learning-Boosted Docking Enables the Efficient Structure-Based Virtual Screening of Giga-Scale Enumerated Chemical Libraries.
    Sivula T; Yetukuri L; Kalliokoski T; Käsnänen H; Poso A; Pöhner I
    J Chem Inf Model; 2023 Sep; 63(18):5773-5783. PubMed ID: 37655823
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Synthon-based ligand discovery in virtual libraries of over 11 billion compounds.
    Sadybekov AA; Sadybekov AV; Liu Y; Iliopoulos-Tsoutsouvas C; Huang XP; Pickett J; Houser B; Patel N; Tran NK; Tong F; Zvonok N; Jain MK; Savych O; Radchenko DS; Nikas SP; Petasis NA; Moroz YS; Roth BL; Makriyannis A; Katritch V
    Nature; 2022 Jan; 601(7893):452-459. PubMed ID: 34912117
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The Pan-Canadian Chemical Library: A Mechanism to Open Academic Chemistry to High-Throughput Virtual Screening.
    Bedart C; Shimokura G; West FG; Wood TE; Batey RA; Irwin JJ; Schapira M
    Sci Data; 2024 Jun; 11(1):597. PubMed ID: 38844472
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Locating sweet spots for screening hits and evaluating pan-assay interference filters from the performance analysis of two lead-like libraries.
    Mok NY; Maxe S; Brenk R
    J Chem Inf Model; 2013 Mar; 53(3):534-44. PubMed ID: 23451880
    [TBL] [Abstract][Full Text] [Related]  

  • 6. HIt Discovery using docking ENriched by GEnerative Modeling (HIDDEN GEM): A novel computational workflow for accelerated virtual screening of ultra-large chemical libraries.
    Popov KI; Wellnitz J; Maxfield T; Tropsha A
    Mol Inform; 2024 Jan; 43(1):e202300207. PubMed ID: 37802967
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Using information from historical high-throughput screens to predict active compounds.
    Riniker S; Wang Y; Jenkins JL; Landrum GA
    J Chem Inf Model; 2014 Jul; 54(7):1880-91. PubMed ID: 24933016
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Virtual Screening of a Chemically Diverse "Superscaffold" Library Enables Ligand Discovery for a Key GPCR Target.
    Grotsch K; Sadybekov AV; Hiller S; Zaidi S; Eremin D; Le A; Liu Y; Smith EC; Illiopoulis-Tsoutsouvas C; Thomas J; Aggarwal S; Pickett JE; Reyes C; Picazo E; Roth BL; Makriyannis A; Katritch V; Fokin VV
    ACS Chem Biol; 2024 Apr; 19(4):866-874. PubMed ID: 38598723
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Drug-likeness and increased hydrophobicity of commercially available compound libraries for drug screening.
    Zuegg J; Cooper MA
    Curr Top Med Chem; 2012; 12(14):1500-13. PubMed ID: 22827520
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The Impact of Supervised Learning Methods in Ultralarge High-Throughput Docking.
    Cavasotto CN; Di Filippo JI
    J Chem Inf Model; 2023 Apr; 63(8):2267-2280. PubMed ID: 37036491
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Development of Ligand-based Big Data Deep Neural Network Models for Virtual Screening of Large Compound Libraries.
    Xiao T; Qi X; Chen Y; Jiang Y
    Mol Inform; 2018 Nov; 37(11):e1800031. PubMed ID: 29882343
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Small-world phenomena in chemical library networks: application to fragment-based drug discovery.
    Tanaka N; Ohno K; Niimi T; Moritomo A; Mori K; Orita M
    J Chem Inf Model; 2009 Dec; 49(12):2677-86. PubMed ID: 19961207
    [TBL] [Abstract][Full Text] [Related]  

  • 13. AI is a viable alternative to high throughput screening: a 318-target study.
    Atomwise AIMS Program
    Sci Rep; 2024 Apr; 14(1):7526. PubMed ID: 38565852
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Automated Inference of Chemical Discriminants of Biological Activity.
    Raschka S; Scott AM; Huertas M; Li W; Kuhn LA
    Methods Mol Biol; 2018; 1762():307-338. PubMed ID: 29594779
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Large-Scale Pretraining Improves Sample Efficiency of Active Learning-Based Virtual Screening.
    Cao Z; Sciabola S; Wang Y
    J Chem Inf Model; 2024 Mar; 64(6):1882-1891. PubMed ID: 38442000
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Commercial SARS-CoV-2 Targeted, Protease Inhibitor Focused and Protein-Protein Interaction Inhibitor Focused Molecular Libraries for Virtual Screening and Drug Design.
    Kralj S; Jukič M; Bren U
    Int J Mol Sci; 2021 Dec; 23(1):. PubMed ID: 35008818
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Machine learning classification can reduce false positives in structure-based virtual screening.
    Adeshina YO; Deeds EJ; Karanicolas J
    Proc Natl Acad Sci U S A; 2020 Aug; 117(31):18477-18488. PubMed ID: 32669436
    [TBL] [Abstract][Full Text] [Related]  

  • 18. BonMOLière: Small-Sized Libraries of Readily Purchasable Compounds, Optimized to Produce Genuine Hits in Biological Screens across the Protein Space.
    Mathai N; Stork C; Kirchmair J
    Int J Mol Sci; 2021 Jul; 22(15):. PubMed ID: 34360558
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Virtual high throughput screening using combined random forest and flexible docking.
    Plewczynski D; von Grotthuss M; Rychlewski L; Ginalski K
    Comb Chem High Throughput Screen; 2009 Jun; 12(5):484-9. PubMed ID: 19519327
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Machine Learning-based Virtual Screening for STAT3 Anticancer Drug Target.
    Wadood A; Ajmal A; Junaid M; Rehman AU; Uddin R; Azam SS; Khan AZ; Ali A
    Curr Pharm Des; 2022; 28(36):3023-3032. PubMed ID: 35909285
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.