BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

152 related articles for article (PubMed ID: 3762509)

  • 1. Development of a test to evaluate the transtubular potassium concentration gradient in the cortical collecting duct in vivo.
    West ML; Bendz O; Chen CB; Singer GG; Richardson RM; Sonnenberg H; Halperin ML
    Miner Electrolyte Metab; 1986; 12(4):226-33. PubMed ID: 3762509
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Inner medullary collecting duct function in ischemic acute renal failure.
    Wilson DR; Honrath U
    Clin Invest Med; 1988 Jun; 11(3):157-66. PubMed ID: 3402104
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The role of the medullary collecting ducts in postobstructive diuresis.
    Sonnenberg H; Wilson DR
    J Clin Invest; 1976 Jun; 57(6):1564-74. PubMed ID: 932194
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Collecting duct sodium reabsorption in deoxycorticosterone-treated rats.
    Haas JA; Berndt TJ; Youngberg SP; Knox FG
    J Clin Invest; 1979 Feb; 63(2):211-4. PubMed ID: 429550
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A micropuncture study of potassium excretion by the remnant kidney.
    Bank N; Aynedjian HS
    J Clin Invest; 1973 Jun; 52(6):1480-90. PubMed ID: 4703232
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effect of a novel diuretic, 7-chloro-2,3-dihydro-1-(2-methylbenzoyl)-4(IH)-quinolinone-4-oxime-o- sulfonic acid, potassium salt (M17055) on Na+ and K+ transport in the distal nephron segments.
    Yasoshima K; Yamasaki F; Shinkawa T; Yoshitomi K; Imai M
    J Pharmacol Exp Ther; 1993 Sep; 266(3):1581-8. PubMed ID: 8396638
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A micropuncture study on the renal site of action of ICI 206,970, a unique eukalemic diuretic.
    Johnston PA; Kau ST
    J Pharmacol Exp Ther; 1993 Feb; 264(2):604-8. PubMed ID: 8437111
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Transtubular potassium concentration gradient (TTKG) and urine ammonium in differential diagnosis of hypokalemia.
    Joo KW; Chang SH; Lee JG; Na KY; Kim YS; Ahn C; Han JS; Kim S; Lee JS
    J Nephrol; 2000; 13(2):120-5. PubMed ID: 10858974
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Does the kidney 'escape' from the kaliuretic action of mineralocorticoids?
    Zettle RM; West ML; Chen CB; Halperin ML
    Miner Electrolyte Metab; 1987; 13(5):340-6. PubMed ID: 3670229
    [TBL] [Abstract][Full Text] [Related]  

  • 10. New clinical approach to evaluate disorders of potassium excretion.
    West ML; Marsden PA; Richardson RM; Zettle RM; Halperin ML
    Miner Electrolyte Metab; 1986; 12(4):234-8. PubMed ID: 3762510
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Some reflections on the mechanism of renal tubular potassium transport.
    Giebisch G
    Yale J Biol Med; 1975 Sep; 48(4):315-36. PubMed ID: 1202761
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effect of chronic potassium loading on potassium secretion by the pars recta or descending limb of the juxtamedullary nephron in the rat.
    Battilana CA; Dobyan DC; Lacy FB; Bhattacharya J; Johnston PA; Jamison RL
    J Clin Invest; 1978 Nov; 62(5):1093-103. PubMed ID: 711855
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The relationship between the plasma potassium concentration and renal potassium excretion in the adrenalectomized rat.
    West ML; Sonnenberg H; Veress A; Halperin ML
    Clin Sci (Lond); 1987 May; 72(5):577-83. PubMed ID: 3581684
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Correlation between creatinine clearance and transtubular potassium concentration gradient in old people and chronic renal disease patients.
    Musso C; Liakopoulos V; Stefanidis I; De Miguel R; Imperiali N; Algranati L
    Saudi J Kidney Dis Transpl; 2007 Nov; 18(4):551-5. PubMed ID: 17951942
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A mathematical model of rat cortical collecting duct: determinants of the transtubular potassium gradient.
    Weinstein AM
    Am J Physiol Renal Physiol; 2001 Jun; 280(6):F1072-92. PubMed ID: 11352847
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Renal tubular site of action of felodipine.
    Dibona GF; Sawin LL
    J Pharmacol Exp Ther; 1984 Feb; 228(2):420-4. PubMed ID: 6694119
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Terminal papillary collecting duct reabsorption of water, sodium, and potassium in Psammomys obesus.
    Dobyan DC; Arrascue JF; Jamison RL
    Am J Physiol; 1980 Dec; 239(6):F539-44. PubMed ID: 7004210
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Urea handling by the medullary collecting duct of the rat kidney during hydropenia and urea infusion.
    Sonnenberg H; Wilson DR
    Pflugers Arch; 1981 May; 390(2):131-7. PubMed ID: 7195561
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Renal haemodynamic and tubular actions of urotensin II in the rat.
    Abdel-Razik AE; Forty EJ; Balment RJ; Ashton N
    J Endocrinol; 2008 Sep; 198(3):617-24. PubMed ID: 18577565
    [TBL] [Abstract][Full Text] [Related]  

  • 20. [The mechanism of the increase in potassium excretion produced by furosemide (author's transl)].
    Leãg MI; Helou CM; Costa R; Rocha AD; Magaldi JB
    Rev Bras Pesqui Med Biol; 1979 Dec; 12(6):391-9. PubMed ID: 542653
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 8.