These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

137 related articles for article (PubMed ID: 37625155)

  • 1. Macroscale Superlubricity of Hydrated Anions in the Boundary Lubrication Regime.
    Han T; Zhao M; Sun C; Zhao R; Xu W; Zhang S; Singh S; Luo J; Zhang C
    ACS Appl Mater Interfaces; 2023 Sep; 15(35):42094-42103. PubMed ID: 37625155
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Macroscale Superlubricity Enabled by Hydrated Alkali Metal Ions.
    Han T; Zhang C; Luo J
    Langmuir; 2018 Sep; 34(38):11281-11291. PubMed ID: 30175911
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Origins of Superlubricity Promoted by Hydrated Multivalent Ions.
    Han T; Zhang C; Li J; Yuan S; Chen X; Zhang J; Luo J
    J Phys Chem Lett; 2020 Jan; 11(1):184-190. PubMed ID: 31826621
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Extreme-Pressure Superlubricity of Polymer Solution Enhanced with Hydrated Salt Ions.
    Li S; Bai P; Li Y; Jia W; Li X; Meng Y; Ma L; Tian Y
    Langmuir; 2020 Jun; 36(24):6765-6774. PubMed ID: 32460491
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Superlubrication obtained with mixtures of hydrated ions and polyethylene glycol solutions in the mixed and hydrodynamic lubrication regimes.
    Han T; Yi S; Zhang C; Li J; Chen X; Luo J; Banquy X
    J Colloid Interface Sci; 2020 Nov; 579():479-488. PubMed ID: 32622097
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Superlubricity and Antiwear Properties of In Situ-Formed Ionic Liquids at Ceramic Interfaces Induced by Tribochemical Reactions.
    Ge X; Li J; Zhang C; Liu Y; Luo J
    ACS Appl Mater Interfaces; 2019 Feb; 11(6):6568-6574. PubMed ID: 30657308
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Origins of hydration lubrication.
    Ma L; Gaisinskaya-Kipnis A; Kampf N; Klein J
    Nat Commun; 2015 Jan; 6():6060. PubMed ID: 25585501
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Hydration lubrication: exploring a new paradigm.
    Gaisinskaya A; Ma L; Silbert G; Sorkin R; Tairy O; Goldberg R; Kampf N; Klein J
    Faraday Discuss; 2012; 156():217-33; discussion 293-309. PubMed ID: 23285630
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Hydration Lubrication in Biomedical Applications: From Cartilage to Hydrogels.
    Lin W; Klein J
    Acc Mater Res; 2022 Feb; 3(2):213-223. PubMed ID: 35243350
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Probing the hydration friction of ionic interfaces at the atomic scale.
    Li Z; Liu Q; Zhang D; Wang Y; Zhang Y; Li Q; Dong M
    Nanoscale Horiz; 2022 Mar; 7(4):368-375. PubMed ID: 35195643
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Study on the Superlubricity Behavior of Ions under External Electric Fields at Steel Interfaces.
    Ge X; Wu X; Shi Q; Song S; Liu Y; Wang W
    Langmuir; 2023 Dec; 39(51):18757-18767. PubMed ID: 38096544
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Regulation Mechanism for Friction Coefficient of Poly(vinylphosphoric acid) (PVPA) Superlubricity System Based on Ionic Properties.
    Liu M; Wang L; Zhang C; Cheng Y; Yang C; Liu Z
    Nanomaterials (Basel); 2022 Jul; 12(13):. PubMed ID: 35808147
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Superlubricity of 1-Ethyl-3-methylimidazolium trifluoromethanesulfonate Ionic Liquid Induced by Tribochemical Reactions.
    Ge X; Li J; Zhang C; Wang Z; Luo J
    Langmuir; 2018 May; 34(18):5245-5252. PubMed ID: 29672065
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Macroscale Superlubricity Enabled by the Synergy Effect of Graphene-Oxide Nanoflakes and Ethanediol.
    Ge X; Li J; Luo R; Zhang C; Luo J
    ACS Appl Mater Interfaces; 2018 Nov; 10(47):40863-40870. PubMed ID: 30388363
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The influence of ions on the lubricative abilities of mucin and the role of sialic acids.
    Weston A; Vladescu SC; Reddyhoff T; Griffiths A; Crouzier T; Fielden M; Garnett JA; Carpenter GH
    Colloids Surf B Biointerfaces; 2023 Jul; 227():113327. PubMed ID: 37172419
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Liquid Superlubricity Enabled by the Synergy Effect of Graphene Oxide and Lithium Salts.
    Ge X; Chai Z; Shi Q; Liu Y; Tang J; Wang W
    Materials (Basel); 2022 May; 15(10):. PubMed ID: 35629573
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Tribochemistry and superlubricity induced by hydrogen ions.
    Li J; Zhang C; Sun L; Lu X; Luo J
    Langmuir; 2012 Nov; 28(45):15816-23. PubMed ID: 23078271
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Lubrication, adsorption, and rheology of aqueous polysaccharide solutions.
    Stokes JR; Macakova L; Chojnicka-Paszun A; de Kruif CG; de Jongh HH
    Langmuir; 2011 Apr; 27(7):3474-84. PubMed ID: 21366278
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Anion Layering and Steric Hydration Repulsion on Positively Charged Surfaces in Aqueous Electrolytes.
    Hu Q; Weber C; Cheng HW; Renner FU; Valtiner M
    Chemphyschem; 2017 Nov; 18(21):3056-3065. PubMed ID: 28872763
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Boundary Slip of Oil Molecules at MoS
    Li J; Li J; Yi S; Wang K
    ACS Appl Mater Interfaces; 2022 Feb; 14(6):8644-8653. PubMed ID: 35119817
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.