These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

113 related articles for article (PubMed ID: 37625155)

  • 41. The Role of Hyaluronic Acid in Cartilage Boundary Lubrication.
    Lin W; Liu Z; Kampf N; Klein J
    Cells; 2020 Jul; 9(7):. PubMed ID: 32630823
    [TBL] [Abstract][Full Text] [Related]  

  • 42. The boundary lubrication of chemically grafted and cross-linked hyaluronic acid in phosphate buffered saline and lipid solutions measured by the surface forces apparatus.
    Yu J; Banquy X; Greene GW; Lowrey DD; Israelachvili JN
    Langmuir; 2012 Jan; 28(4):2244-50. PubMed ID: 22148857
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Unravelling High-Load Superlubricity of Ionic Liquid Analogues by
    Liang H; Yin T; Liu M; Fu C; Xia X; Zou S; Hua X; Fu Y; Bu Y
    J Phys Chem Lett; 2023 Jan; 14(2):453-459. PubMed ID: 36622949
    [TBL] [Abstract][Full Text] [Related]  

  • 44. 3D-Printed Topological MoS
    Zhao Y; Mei H; Chang P; Yang Y; Huang W; Liu Y; Cheng L; Zhang L
    ACS Appl Mater Interfaces; 2021 Jul; 13(29):34984-34995. PubMed ID: 34278775
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Ultra-low friction between boundary layers of hyaluronan-phosphatidylcholine complexes.
    Zhu L; Seror J; Day AJ; Kampf N; Klein J
    Acta Biomater; 2017 Sep; 59():283-292. PubMed ID: 28669720
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Experimental and Numerical Study of the Mixed Lubrication Considering Boundary Film Strength.
    Zhang S; Yan Z; Liu Z; Jiang Y; Sun H; Wu S
    Materials (Basel); 2023 Jan; 16(3):. PubMed ID: 36770042
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Adsorption, lubrication, and wear of lubricin on model surfaces: polymer brush-like behavior of a glycoprotein.
    Zappone B; Ruths M; Greene GW; Jay GD; Israelachvili JN
    Biophys J; 2007 Mar; 92(5):1693-708. PubMed ID: 17142292
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Macroscale Superlubricity and Polymorphism of Long-Chain
    Reddyhoff T; Ewen JP; Deshpande P; Frogley MD; Welch MD; Montgomery W
    ACS Appl Mater Interfaces; 2021 Feb; 13(7):9239-9251. PubMed ID: 33565870
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Lubrication of Articular Cartilage.
    Jahn S; Seror J; Klein J
    Annu Rev Biomed Eng; 2016 Jul; 18():235-58. PubMed ID: 27420572
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Regulation Mechanism of Salt Ions for Superlubricity of Hydrophilic Polymer Cross-Linked Networks on Ti
    Zhang C; Liu Y; Liu Z; Zhang H; Cheng Q; Yang C
    Langmuir; 2017 Mar; 33(9):2133-2140. PubMed ID: 28183180
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Self-Adaptive Macroscale Superlubricity Based on the Tribocatalytic Properties of Partially Oxidized Black Phosphorus.
    Gao K; Bin W; Berman D; Ren Y; Luo J; Xie G
    Nano Lett; 2023 Aug; 23(15):6823-6830. PubMed ID: 37486802
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Effects of Hyaluronan Molecular Weight on the Lubrication of Cartilage-Emulating Boundary Layers.
    Liu Z; Lin W; Fan Y; Kampf N; Wang Y; Klein J
    Biomacromolecules; 2020 Oct; 21(10):4345-4354. PubMed ID: 32931261
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Study on Lubrication and Friction Reduction Properties of ZIF-8 Nanoparticles as Si
    Sui T; Li L; Lin B; Zhang Y; Zhang B; Yan S
    Front Chem; 2021; 9():802375. PubMed ID: 34988064
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Normal and shear forces between boundary sphingomyelin layers under aqueous conditions.
    Cao Y; Kampf N; Lin W; Klein J
    Soft Matter; 2020 Apr; 16(16):3973-3980. PubMed ID: 32250380
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Surface wettability effect on aqueous lubrication: Van der Waals and hydration force competition induced adhesive friction.
    Li Y; Li S; Bai P; Jia W; Xu Q; Meng Y; Ma L; Tian Y
    J Colloid Interface Sci; 2021 Oct; 599():667-675. PubMed ID: 33984761
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Macroscale Superlubricity Enabled by Graphene-Coated Surfaces.
    Zhang Z; Du Y; Huang S; Meng F; Chen L; Xie W; Chang K; Zhang C; Lu Y; Lin CT; Li S; Parkin IP; Guo D
    Adv Sci (Weinh); 2020 Feb; 7(4):1903239. PubMed ID: 32099768
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Highly improved aqueous lubrication of polymer surface by noncovalently bonding hyaluronic acid-based hydration layer for endotracheal intubation.
    Li YP; Liu W; Liu YH; Ren Y; Wang ZG; Zhao B; Huang S; Xu JZ; Li ZM
    Biomaterials; 2020 Dec; 262():120336. PubMed ID: 32920428
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Superlubricity achieved with mixtures of acids and glycerol.
    Li J; Zhang C; Ma L; Liu Y; Luo J
    Langmuir; 2013 Jan; 29(1):271-5. PubMed ID: 23227833
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Origins of extreme boundary lubrication by phosphatidylcholine liposomes.
    Sorkin R; Kampf N; Dror Y; Shimoni E; Klein J
    Biomaterials; 2013 Jul; 34(22):5465-75. PubMed ID: 23623226
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Trapped Aqueous Films Lubricate Highly Hydrophobic Surfaces.
    Rosenhek-Goldian I; Kampf N; Klein J
    ACS Nano; 2018 Oct; 12(10):10075-10083. PubMed ID: 30252440
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.