BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

169 related articles for article (PubMed ID: 37625156)

  • 1. Revealing Disparities in Porous Networks Between Yttria Aerogel Assemblies with Nanosheets and Nanoparticles and Their Ultrathermal Insulation and Optical Properties.
    Wang Y; Ma D; Deng Z; Peng Y; Wang Y; Liu B; Wang X; Zhang G; Zhu L; Xu D
    ACS Appl Mater Interfaces; 2023 Sep; 15(35):41880-41891. PubMed ID: 37625156
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Three-Dimensional Assembly of Yttrium Oxide Nanosheets into Luminescent Aerogel Monoliths with Outstanding Adsorption Properties.
    Cheng W; Rechberger F; Niederberger M
    ACS Nano; 2016 Feb; 10(2):2467-75. PubMed ID: 26756944
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Devisable pore structures and tunable thermal management properties of aerogels composed of carbon nanotubes and cellulose nanofibers with various aspect ratios.
    Wang M; Miao X; Hou C; Xu K; Ke Z; Dai F; Liu M; Li H; Chen C
    Carbohydr Polym; 2024 Jan; 323():121437. PubMed ID: 37940302
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Compressible, Thermally Insulating, and Fire Retardant Aerogels through Self-Assembling Silk Fibroin Biopolymers Inside a Silica Structure-An Approach towards 3D Printing of Aerogels.
    Maleki H; Montes S; Hayati-Roodbari N; Putz F; Huesing N
    ACS Appl Mater Interfaces; 2018 Jul; 10(26):22718-22730. PubMed ID: 29864277
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Construction of chitosan/alginate aerogels with three-dimensional hierarchical pore network structure via hydrogen bonding dissolution and covalent crosslinking synergistic strategy for thermal management systems.
    Yang Q; Feng S; Guo J; Guan F; Zhang S; Sun J; Zhang Y; Xu Y; Zhang X; Bao D; He J
    Int J Biol Macromol; 2024 Jun; ():133367. PubMed ID: 38945720
    [TBL] [Abstract][Full Text] [Related]  

  • 6. "Rigid-Flexible" Anisotropic Biomass-Derived Aerogels with Superior Mechanical Properties for Oil Recovery and Thermal Insulation.
    Tan Z; Yoo CG; Yang D; Liu W; Qiu X; Zheng D
    ACS Appl Mater Interfaces; 2023 Sep; 15(35):42080-42093. PubMed ID: 37624365
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Controllable assembly of three-dimensional porous graphene-Au dual aerogels and its application for high-efficient bioelectrocatalytic O
    Ma T; Mu W; Tang Y; Bi W; Liu W; Wen D
    Anal Chim Acta; 2023 Apr; 1251():341013. PubMed ID: 36925295
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Sol-Gel assembly of CdSe nanoparticles to form porous aerogel networks.
    Arachchige IU; Brock SL
    J Am Chem Soc; 2006 Jun; 128(24):7964-71. PubMed ID: 16771511
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effects of nanoparticle shape on the morphology and properties of porous CdSe assemblies (aerogels).
    Yu H; Brock SL
    ACS Nano; 2008 Aug; 2(8):1563-70. PubMed ID: 19206358
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Flexible, Strong, Multifunctional Graphene Oxide/Silica-Based Composite Aerogels via a Double-Cross-Linked Network Approach.
    Zheng Z; Zhao Y; Hu J; Wang H
    ACS Appl Mater Interfaces; 2020 Oct; 12(42):47854-47864. PubMed ID: 33045826
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Facile Preparation of a Novel HfC Aerogel with Low Thermal Conductivity and Excellent Mechanical Properties.
    Wang W; Wu Z; Song S; You Q; Cui S; Shen W; Wang G; Zhang X; Zhu X
    Gels; 2023 Oct; 9(10):. PubMed ID: 37888412
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Exploring the Versatility of Aerogels: Broad Applications in Biomedical Engineering, Astronautics, Energy Storage, Biosensing, and Current Progress.
    Khan NR; Sharmin T; Bin Rashid A
    Heliyon; 2024 Jan; 10(1):e23102. PubMed ID: 38163169
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Three-Dimensional Macroassembly of Sandwich-Like, Hierarchical, Porous Carbon/Graphene Nanosheets towards Ultralight, Superhigh Surface Area, Multifunctional Aerogels.
    Zhu J; Yang X; Fu Z; He J; Wang C; Wu W; Zhang L
    Chemistry; 2016 Feb; 22(7):2515-24. PubMed ID: 26752085
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Nanostructurally Controllable Strong Wood Aerogel toward Efficient Thermal Insulation.
    Garemark J; Perea-Buceta JE; Rico Del Cerro D; Hall S; Berke B; Kilpeläinen I; Berglund LA; Li Y
    ACS Appl Mater Interfaces; 2022 Jun; 14(21):24697-24707. PubMed ID: 35511115
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Double-Phase-Networking Polyimide Hybrid Aerogel with Exceptional Dimensional Stability for Superior Thermal Protection System.
    Liu C; Wang M; Wang J; Xu G; Zhang S; Ding F
    Small; 2024 Jul; ():e2404104. PubMed ID: 38953403
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A New Ultrafine Luminescent La
    García Ramírez VM; García Murillo A; Carrillo Romo FJ; Alvarez González RI; Madrigal Bujaidar E
    Gels; 2023 Jul; 9(8):. PubMed ID: 37623070
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Preparation and Properties of Highly Transparent SiO
    Shi B; Xie L; Ma B; Zhou Z; Xu B; Qu L
    Gels; 2022 Nov; 8(11):. PubMed ID: 36421566
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Robust Silica-Bacterial Cellulose Composite Aerogel Fibers for Thermal Insulation Textile.
    Sai H; Wang M; Miao C; Song Q; Wang Y; Fu R; Wang Y; Ma L; Hao Y
    Gels; 2021 Sep; 7(3):. PubMed ID: 34563031
    [TBL] [Abstract][Full Text] [Related]  

  • 19. In Situ Formation of the TiCN Phase in SiBCN Ceramic Aerogels Enabling Superior Thermal and Structural Stability up to 1800 °C.
    Sun X; Zhu W; Wang H; Yan X; Su D
    ACS Appl Mater Interfaces; 2023 Mar; 15(9):12221-12231. PubMed ID: 36825905
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Additive manufacturing of silica aerogels.
    Zhao S; Siqueira G; Drdova S; Norris D; Ubert C; Bonnin A; Galmarini S; Ganobjak M; Pan Z; Brunner S; Nyström G; Wang J; Koebel MM; Malfait WJ
    Nature; 2020 Aug; 584(7821):387-392. PubMed ID: 32814885
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.