These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
174 related articles for article (PubMed ID: 37625156)
1. Revealing Disparities in Porous Networks Between Yttria Aerogel Assemblies with Nanosheets and Nanoparticles and Their Ultrathermal Insulation and Optical Properties. Wang Y; Ma D; Deng Z; Peng Y; Wang Y; Liu B; Wang X; Zhang G; Zhu L; Xu D ACS Appl Mater Interfaces; 2023 Sep; 15(35):41880-41891. PubMed ID: 37625156 [TBL] [Abstract][Full Text] [Related]
2. Three-Dimensional Assembly of Yttrium Oxide Nanosheets into Luminescent Aerogel Monoliths with Outstanding Adsorption Properties. Cheng W; Rechberger F; Niederberger M ACS Nano; 2016 Feb; 10(2):2467-75. PubMed ID: 26756944 [TBL] [Abstract][Full Text] [Related]
3. Robust and Density Tunable Kevlar/Hexagonal Boron Nitride Microribbon Aerogels with Excellent Thermal, Mechanical, and Oil-Absorption Properties. Long H; Hu Y; Liu J; Wang W; Liao G; Yuen ACY; Yeoh GH; Hu Y; Shi T ACS Appl Mater Interfaces; 2024 Sep; 16(38):51421-51432. PubMed ID: 39284025 [TBL] [Abstract][Full Text] [Related]
4. Interpenetrated Multinetwork Hybrid Aerogels by Layered Montmorillonite and One-Dimensional Hydroxyapatite Fibers for Heat and Fire Insulation. Chen Y; Guo W; Zhang S; Zhang J; Xu H; Li N; Meng X; Xi M; Liu C; Wang Z ACS Appl Mater Interfaces; 2024 Jul; 16(30):39886-39895. PubMed ID: 39036935 [TBL] [Abstract][Full Text] [Related]
5. Devisable pore structures and tunable thermal management properties of aerogels composed of carbon nanotubes and cellulose nanofibers with various aspect ratios. Wang M; Miao X; Hou C; Xu K; Ke Z; Dai F; Liu M; Li H; Chen C Carbohydr Polym; 2024 Jan; 323():121437. PubMed ID: 37940302 [TBL] [Abstract][Full Text] [Related]
6. Compressible, Thermally Insulating, and Fire Retardant Aerogels through Self-Assembling Silk Fibroin Biopolymers Inside a Silica Structure-An Approach towards 3D Printing of Aerogels. Maleki H; Montes S; Hayati-Roodbari N; Putz F; Huesing N ACS Appl Mater Interfaces; 2018 Jul; 10(26):22718-22730. PubMed ID: 29864277 [TBL] [Abstract][Full Text] [Related]
7. Construction of chitosan/alginate aerogels with three-dimensional hierarchical pore network structure via hydrogen bonding dissolution and covalent crosslinking synergistic strategy for thermal management systems. Yang Q; Feng S; Guo J; Guan F; Zhang S; Sun J; Zhang Y; Xu Y; Zhang X; Bao D; He J Int J Biol Macromol; 2024 Aug; 275(Pt 2):133367. PubMed ID: 38945720 [TBL] [Abstract][Full Text] [Related]
8. "Rigid-Flexible" Anisotropic Biomass-Derived Aerogels with Superior Mechanical Properties for Oil Recovery and Thermal Insulation. Tan Z; Yoo CG; Yang D; Liu W; Qiu X; Zheng D ACS Appl Mater Interfaces; 2023 Sep; 15(35):42080-42093. PubMed ID: 37624365 [TBL] [Abstract][Full Text] [Related]
9. Controllable assembly of three-dimensional porous graphene-Au dual aerogels and its application for high-efficient bioelectrocatalytic O Ma T; Mu W; Tang Y; Bi W; Liu W; Wen D Anal Chim Acta; 2023 Apr; 1251():341013. PubMed ID: 36925295 [TBL] [Abstract][Full Text] [Related]
10. Sol-Gel assembly of CdSe nanoparticles to form porous aerogel networks. Arachchige IU; Brock SL J Am Chem Soc; 2006 Jun; 128(24):7964-71. PubMed ID: 16771511 [TBL] [Abstract][Full Text] [Related]
11. Effects of nanoparticle shape on the morphology and properties of porous CdSe assemblies (aerogels). Yu H; Brock SL ACS Nano; 2008 Aug; 2(8):1563-70. PubMed ID: 19206358 [TBL] [Abstract][Full Text] [Related]
12. Flexible, Strong, Multifunctional Graphene Oxide/Silica-Based Composite Aerogels via a Double-Cross-Linked Network Approach. Zheng Z; Zhao Y; Hu J; Wang H ACS Appl Mater Interfaces; 2020 Oct; 12(42):47854-47864. PubMed ID: 33045826 [TBL] [Abstract][Full Text] [Related]
13. Facile Preparation of a Novel HfC Aerogel with Low Thermal Conductivity and Excellent Mechanical Properties. Wang W; Wu Z; Song S; You Q; Cui S; Shen W; Wang G; Zhang X; Zhu X Gels; 2023 Oct; 9(10):. PubMed ID: 37888412 [TBL] [Abstract][Full Text] [Related]
14. Exploring the Versatility of Aerogels: Broad Applications in Biomedical Engineering, Astronautics, Energy Storage, Biosensing, and Current Progress. Khan NR; Sharmin T; Bin Rashid A Heliyon; 2024 Jan; 10(1):e23102. PubMed ID: 38163169 [TBL] [Abstract][Full Text] [Related]
15. Three-Dimensional Macroassembly of Sandwich-Like, Hierarchical, Porous Carbon/Graphene Nanosheets towards Ultralight, Superhigh Surface Area, Multifunctional Aerogels. Zhu J; Yang X; Fu Z; He J; Wang C; Wu W; Zhang L Chemistry; 2016 Feb; 22(7):2515-24. PubMed ID: 26752085 [TBL] [Abstract][Full Text] [Related]
16. Nanostructurally Controllable Strong Wood Aerogel toward Efficient Thermal Insulation. Garemark J; Perea-Buceta JE; Rico Del Cerro D; Hall S; Berke B; Kilpeläinen I; Berglund LA; Li Y ACS Appl Mater Interfaces; 2022 Jun; 14(21):24697-24707. PubMed ID: 35511115 [TBL] [Abstract][Full Text] [Related]
17. Double-Phase-Networking Polyimide Hybrid Aerogel with Exceptional Dimensional Stability for Superior Thermal Protection System. Liu C; Wang M; Wang J; Xu G; Zhang S; Ding F Small; 2024 Nov; 20(44):e2404104. PubMed ID: 38953403 [TBL] [Abstract][Full Text] [Related]
18. A New Ultrafine Luminescent La García Ramírez VM; García Murillo A; Carrillo Romo FJ; Alvarez González RI; Madrigal Bujaidar E Gels; 2023 Jul; 9(8):. PubMed ID: 37623070 [TBL] [Abstract][Full Text] [Related]
19. Preparation and Properties of Highly Transparent SiO Shi B; Xie L; Ma B; Zhou Z; Xu B; Qu L Gels; 2022 Nov; 8(11):. PubMed ID: 36421566 [TBL] [Abstract][Full Text] [Related]
20. Robust Silica-Bacterial Cellulose Composite Aerogel Fibers for Thermal Insulation Textile. Sai H; Wang M; Miao C; Song Q; Wang Y; Fu R; Wang Y; Ma L; Hao Y Gels; 2021 Sep; 7(3):. PubMed ID: 34563031 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]