These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

175 related articles for article (PubMed ID: 37625254)

  • 1. Physiological and biochemical roles of ascorbic acid on mitigation of abiotic stresses in plants.
    Celi GEA; Gratão PL; Lanza MGDB; Reis ARD
    Plant Physiol Biochem; 2023 Sep; 202():107970. PubMed ID: 37625254
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Ascorbic Acid-A Potential Oxidant Scavenger and Its Role in Plant Development and Abiotic Stress Tolerance.
    Akram NA; Shafiq F; Ashraf M
    Front Plant Sci; 2017; 8():613. PubMed ID: 28491070
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Multiple Physiological and Biochemical Functions of Ascorbic Acid in Plant Growth, Development, and Abiotic Stress Response.
    Wu P; Li B; Liu Y; Bian Z; Xiong J; Wang Y; Zhu B
    Int J Mol Sci; 2024 Feb; 25(3):. PubMed ID: 38339111
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Roles of selenium in mineral plant nutrition: ROS scavenging responses against abiotic stresses.
    Lanza MGDB; Reis ARD
    Plant Physiol Biochem; 2021 Jul; 164():27-43. PubMed ID: 33962229
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Comparison of ascorbic acid biosynthesis in different tissues of three non-heading Chinese cabbage cultivars.
    Ren J; Chen Z; Duan W; Song X; Liu T; Wang J; Hou X; Li Y
    Plant Physiol Biochem; 2013 Dec; 73():229-36. PubMed ID: 24157701
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Overexpression of AtOxR gene improves abiotic stresses tolerance and vitamin C content in Arabidopsis thaliana.
    Bu Y; Sun B; Zhou A; Zhang X; Takano T; Liu S
    BMC Biotechnol; 2016 Oct; 16(1):69. PubMed ID: 27717369
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Coordinated Actions of Glyoxalase and Antioxidant Defense Systems in Conferring Abiotic Stress Tolerance in Plants.
    Hasanuzzaman M; Nahar K; Hossain MS; Mahmud JA; Rahman A; Inafuku M; Oku H; Fujita M
    Int J Mol Sci; 2017 Jan; 18(1):. PubMed ID: 28117669
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Influence of natural and synthetic vitamin C (ascorbic acid) on primary and secondary metabolites and associated metabolism in quinoa (Chenopodium quinoa Willd.) plants under water deficit regimes.
    Aziz A; Akram NA; Ashraf M
    Plant Physiol Biochem; 2018 Feb; 123():192-203. PubMed ID: 29248677
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The ethylene response factor AtERF98 enhances tolerance to salt through the transcriptional activation of ascorbic acid synthesis in Arabidopsis.
    Zhang Z; Wang J; Zhang R; Huang R
    Plant J; 2012 Jul; 71(2):273-87. PubMed ID: 22417285
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The tomato HD-Zip I transcription factor SlHZ24 modulates ascorbate accumulation through positive regulation of the D-mannose/L-galactose pathway.
    Hu T; Ye J; Tao P; Li H; Zhang J; Zhang Y; Ye Z
    Plant J; 2016 Jan; 85(1):16-29. PubMed ID: 26610866
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Alternative pathways leading to ascorbate biosynthesis in plants: lessons from the last 25 years.
    Quiñones CO; Gesto-Borroto R; Wilson RV; Hernández-Madrigal SV; Lorence A
    J Exp Bot; 2024 May; 75(9):2644-2663. PubMed ID: 38488689
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Reactive oxygen species signaling in plants under abiotic stress.
    Choudhury S; Panda P; Sahoo L; Panda SK
    Plant Signal Behav; 2013 Apr; 8(4):e23681. PubMed ID: 23425848
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Cellular redox regulation, signaling, and stress response in plants.
    Shigeoka S; Maruta T
    Biosci Biotechnol Biochem; 2014; 78(9):1457-70. PubMed ID: 25209493
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Translocation and the alternative D-galacturonate pathway contribute to increasing the ascorbate level in ripening tomato fruits together with the D-mannose/L-galactose pathway.
    Badejo AA; Wada K; Gao Y; Maruta T; Sawa Y; Shigeoka S; Ishikawa T
    J Exp Bot; 2012 Jan; 63(1):229-39. PubMed ID: 21984649
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Micronutrient fertilization enhances ROS scavenging system for alleviation of abiotic stresses in plants.
    Tavanti TR; Melo AAR; Moreira LDK; Sanchez DEJ; Silva RDS; Silva RMD; Reis ARD
    Plant Physiol Biochem; 2021 Mar; 160():386-396. PubMed ID: 33556754
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Methylglyoxal - a signaling molecule in plant abiotic stress responses.
    Mostofa MG; Ghosh A; Li ZG; Siddiqui MN; Fujita M; Tran LP
    Free Radic Biol Med; 2018 Jul; 122():96-109. PubMed ID: 29545071
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Melatonin alleviates imidacloprid phytotoxicity to cucumber (Cucumis sativus L.) through modulating redox homeostasis in plants and promoting its metabolism by enhancing glutathione dependent detoxification.
    Liu N; Li J; Lv J; Yu J; Xie J; Wu Y; Tang Z
    Ecotoxicol Environ Saf; 2021 Jul; 217():112248. PubMed ID: 33901782
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Metabolic engineering in food crops to enhance ascorbic acid production: crop biofortification perspectives for human health.
    Chaturvedi S; Khan S; Bhunia RK; Kaur K; Tiwari S
    Physiol Mol Biol Plants; 2022 Apr; 28(4):871-884. PubMed ID: 35464783
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Heavy-metal-induced reactive oxygen species: phytotoxicity and physicochemical changes in plants.
    Shahid M; Pourrut B; Dumat C; Nadeem M; Aslam M; Pinelli E
    Rev Environ Contam Toxicol; 2014; 232():1-44. PubMed ID: 24984833
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Ascorbic acid: a metabolite switch for designing stress-smart crops.
    Mishra S; Sharma A; Srivastava AK
    Crit Rev Biotechnol; 2024 Jan; ():1-17. PubMed ID: 38163756
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.