These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
171 related articles for article (PubMed ID: 37625260)
1. Predicting lung cancer survival based on clinical data using machine learning: A review. Altuhaifa FA; Win KT; Su G Comput Biol Med; 2023 Oct; 165():107338. PubMed ID: 37625260 [TBL] [Abstract][Full Text] [Related]
2. Machine learning approaches to analysing textual injury surveillance data: a systematic review. Vallmuur K Accid Anal Prev; 2015 Jun; 79():41-9. PubMed ID: 25795924 [TBL] [Abstract][Full Text] [Related]
3. Use of machine learning to predict bladder cancer survival outcomes: a systematic literature review. Liu YS; Thaliffdeen R; Han S; Park C Expert Rev Pharmacoecon Outcomes Res; 2023; 23(7):761-771. PubMed ID: 37306511 [TBL] [Abstract][Full Text] [Related]
4. Data-driven modeling and prediction of blood glucose dynamics: Machine learning applications in type 1 diabetes. Woldaregay AZ; Årsand E; Walderhaug S; Albers D; Mamykina L; Botsis T; Hartvigsen G Artif Intell Med; 2019 Jul; 98():109-134. PubMed ID: 31383477 [TBL] [Abstract][Full Text] [Related]
5. Potential value and impact of data mining and machine learning in clinical diagnostics. Saberi-Karimian M; Khorasanchi Z; Ghazizadeh H; Tayefi M; Saffar S; Ferns GA; Ghayour-Mobarhan M Crit Rev Clin Lab Sci; 2021 Jun; 58(4):275-296. PubMed ID: 33739235 [TBL] [Abstract][Full Text] [Related]
6. Role of biological Data Mining and Machine Learning Techniques in Detecting and Diagnosing the Novel Coronavirus (COVID-19): A Systematic Review. Albahri AS; Hamid RA; Alwan JK; Al-Qays ZT; Zaidan AA; Zaidan BB; Albahri AOS; AlAmoodi AH; Khlaf JM; Almahdi EM; Thabet E; Hadi SM; Mohammed KI; Alsalem MA; Al-Obaidi JR; Madhloom HT J Med Syst; 2020 May; 44(7):122. PubMed ID: 32451808 [TBL] [Abstract][Full Text] [Related]
7. Folic acid supplementation and malaria susceptibility and severity among people taking antifolate antimalarial drugs in endemic areas. Crider K; Williams J; Qi YP; Gutman J; Yeung L; Mai C; Finkelstain J; Mehta S; Pons-Duran C; Menéndez C; Moraleda C; Rogers L; Daniels K; Green P Cochrane Database Syst Rev; 2022 Feb; 2(2022):. PubMed ID: 36321557 [TBL] [Abstract][Full Text] [Related]
8. A systematic review of data mining and machine learning for air pollution epidemiology. Bellinger C; Mohomed Jabbar MS; Zaïane O; Osornio-Vargas A BMC Public Health; 2017 Nov; 17(1):907. PubMed ID: 29179711 [TBL] [Abstract][Full Text] [Related]
9. Application of machine learning techniques for predicting survival in ovarian cancer. Sorayaie Azar A; Babaei Rikan S; Naemi A; Bagherzadeh Mohasefi J; Pirnejad H; Bagherzadeh Mohasefi M; Wiil UK BMC Med Inform Decis Mak; 2022 Dec; 22(1):345. PubMed ID: 36585641 [TBL] [Abstract][Full Text] [Related]
10. Cervical cancer survival prediction by machine learning algorithms: a systematic review. Rahimi M; Akbari A; Asadi F; Emami H BMC Cancer; 2023 Apr; 23(1):341. PubMed ID: 37055741 [TBL] [Abstract][Full Text] [Related]
11. Potential applications and performance of machine learning techniques and algorithms in clinical practice: A systematic review. Nwanosike EM; Conway BR; Merchant HA; Hasan SS Int J Med Inform; 2022 Mar; 159():104679. PubMed ID: 34990939 [TBL] [Abstract][Full Text] [Related]
12. Prediction models applying machine learning to oral cavity cancer outcomes: A systematic review. Adeoye J; Tan JY; Choi SW; Thomson P Int J Med Inform; 2021 Oct; 154():104557. PubMed ID: 34455119 [TBL] [Abstract][Full Text] [Related]
13. Overall Survival Prognostic Modelling of Non-small Cell Lung Cancer Patients Using Positron Emission Tomography/Computed Tomography Harmonised Radiomics Features: The Quest for the Optimal Machine Learning Algorithm. Amini M; Hajianfar G; Hadadi Avval A; Nazari M; Deevband MR; Oveisi M; Shiri I; Zaidi H Clin Oncol (R Coll Radiol); 2022 Feb; 34(2):114-127. PubMed ID: 34872823 [TBL] [Abstract][Full Text] [Related]
14. Risk factors and prognostic nomogram for patients with second primary cancers after lung cancer using classical statistics and machine learning. Luo L; Lin H; Huang J; Lin B; Huang F; Luo H Clin Exp Med; 2023 Sep; 23(5):1609-1620. PubMed ID: 35821159 [TBL] [Abstract][Full Text] [Related]
15. Machine learning in oral squamous cell carcinoma: Current status, clinical concerns and prospects for future-A systematic review. Alabi RO; Youssef O; Pirinen M; Elmusrati M; Mäkitie AA; Leivo I; Almangush A Artif Intell Med; 2021 May; 115():102060. PubMed ID: 34001326 [TBL] [Abstract][Full Text] [Related]
16. Development and Assessment of a Machine Learning Model to Help Predict Survival Among Patients With Oral Squamous Cell Carcinoma. Karadaghy OA; Shew M; New J; Bur AM JAMA Otolaryngol Head Neck Surg; 2019 Dec; 145(12):1115-1120. PubMed ID: 31045212 [TBL] [Abstract][Full Text] [Related]
17. Machine learning approaches for prediction of early death among lung cancer patients with bone metastases using routine clinical characteristics: An analysis of 19,887 patients. Cui Y; Shi X; Wang S; Qin Y; Wang B; Che X; Lei M Front Public Health; 2022; 10():1019168. PubMed ID: 36276398 [TBL] [Abstract][Full Text] [Related]
18. A multicenter random forest model for effective prognosis prediction in collaborative clinical research network. Li J; Tian Y; Zhu Y; Zhou T; Li J; Ding K; Li J Artif Intell Med; 2020 Mar; 103():101814. PubMed ID: 32143809 [TBL] [Abstract][Full Text] [Related]
19. A machine learning-based approach to prognostic analysis of thoracic transplantations. Delen D; Oztekin A; Kong ZJ Artif Intell Med; 2010 May; 49(1):33-42. PubMed ID: 20153956 [TBL] [Abstract][Full Text] [Related]
20. Missing data is poorly handled and reported in prediction model studies using machine learning: a literature review. Nijman S; Leeuwenberg AM; Beekers I; Verkouter I; Jacobs J; Bots ML; Asselbergs FW; Moons K; Debray T J Clin Epidemiol; 2022 Feb; 142():218-229. PubMed ID: 34798287 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]