These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
128 related articles for article (PubMed ID: 37625732)
41. Effects of water-table changes following rainfall events on arsenic fate and transport in groundwater-surface water mixing zones. Park J; Lee D; Kim H; Woo NC Sci Total Environ; 2024 Jul; 933():173200. PubMed ID: 38750763 [TBL] [Abstract][Full Text] [Related]
42. Numerical simulation and protection of the dynamic change of Jinan karst spring based on coupling of seepage and conduit flow. Li C; Xing L; Dong Y; Peng Y; Xing X; Li C; Zhao Z Heliyon; 2022 Sep; 8(9):e10428. PubMed ID: 36060469 [TBL] [Abstract][Full Text] [Related]
43. [Hydrochemical Characteristics and Formation Causes of Ground Karst Water Systems in the Longzici Spring Catchment]. Tang CL; Zheng XQ; Liang YP Huan Jing Ke Xue; 2020 May; 41(5):2087-2095. PubMed ID: 32608826 [TBL] [Abstract][Full Text] [Related]
44. Quantifying the dynamics of sub-daily to seasonal hydrological interactions of Ganges river with groundwater in a densely populated city: Implications to vulnerability of drinking water sources. Das P; Mukherjee A; Lapworth DJ; Das K; Bhaumik S; Layek MK; Shaw A; Smith M; Sengupta P; MacDonald AM; Sen J J Environ Manage; 2021 Jun; 288():112384. PubMed ID: 33773213 [TBL] [Abstract][Full Text] [Related]
45. Relationship between organic micropollutants and hydro-sedimentary processes at a karst spring in south-west Germany. Schiperski F; Zirlewagen J; Hillebrand O; Nödler K; Licha T; Scheytt T Sci Total Environ; 2015 Nov; 532():360-7. PubMed ID: 26081739 [TBL] [Abstract][Full Text] [Related]
46. Surface Water-Groundwater Interaction in the Guanzhong Section of the Weihe River Basin, China. Kong F; Song J; Zhang Y; Fu G; Cheng D; Zhang G; Xue Y Ground Water; 2019 Jul; 57(4):647-660. PubMed ID: 30582150 [TBL] [Abstract][Full Text] [Related]
47. Validation of a numerical indicator of microbial contamination for karst springs. Butscher C; Auckenthaler A; Scheidler S; Huggenberger P Ground Water; 2011; 49(1):66-76. PubMed ID: 20180864 [TBL] [Abstract][Full Text] [Related]
48. Understanding changes in the hydrological behaviour within a karst aquifer (Lurbach system, Austria). Mayaud C; Wagner T; Benischke R; Birk S Carbonates Evaporites; 2016; 31(4):357-365. PubMed ID: 28077913 [TBL] [Abstract][Full Text] [Related]
49. CO Wang Y; Yang P; Ren S; He X; Wei C; Wang S; Xu Y; Xu Z; Zhang Y; Ismail H Int J Environ Res Public Health; 2019 Jul; 16(15):. PubMed ID: 31349697 [TBL] [Abstract][Full Text] [Related]
50. The evolution of hydrochemical and isotopic signatures from precipitation, surface water to groundwater in a typical karst watershed, Central Texas, USA. Tian L; Gao Y; Yang G; Schwartz B; Cai B; Lei G; Shi G; Ray C; Sok S; Martinez E; Li Y; Wu H Isotopes Environ Health Stud; 2021 Oct; 57(5):492-515. PubMed ID: 34269607 [TBL] [Abstract][Full Text] [Related]
51. Distribution, sources and transport of polycyclic aromatic hydrocarbons (PAHs) in karst spring systems from Western Hubei, Central China. Chen W; Zhang Z; Zhu Y; Wang X; Wang L; Xiong J; Qian Z; Xiong S; Zhao R; Liu W; Su Q; Zhou J; Zhou H; Qi S; Jones KC Chemosphere; 2022 Aug; 300():134502. PubMed ID: 35395255 [TBL] [Abstract][Full Text] [Related]
52. Spatial distribution, source apportionment and health risk assessment of inorganic pollutants of surface water and groundwater in the southern margin of Junggar Basin, Xinjiang, China. Lei M; Zhou J; Zhou Y; Sun Y; Ji Y; Zeng Y J Environ Manage; 2022 Oct; 319():115757. PubMed ID: 35863304 [TBL] [Abstract][Full Text] [Related]
53. Temporal variations of spring hydrochemistry as clues to the karst system behaviour: an example of Louros Catchment. Pinza JG; Katsanou K; Lambrakis N; Stigter TY Environ Monit Assess; 2024 Jun; 196(7):624. PubMed ID: 38884659 [TBL] [Abstract][Full Text] [Related]
54. Rapid transport of organochlorine pesticides (OCPs) in multimedia environment from karst area. Huang H; Liu H; Xiong S; Zeng F; Bu J; Zhang B; Liu W; Zhou H; Qi S; Xu L; Chen W Sci Total Environ; 2021 Jun; 775():145698. PubMed ID: 33631579 [TBL] [Abstract][Full Text] [Related]
55. Rainfall-driven Buckerfield SJ; Quilliam RS; Waldron S; Naylor LA; Li S; Oliver DM Water Res X; 2019 Dec; 5():100038. PubMed ID: 31660535 [TBL] [Abstract][Full Text] [Related]
56. Ecotoxicological aspects related to the occurrence of emerging contaminants in the Dinaric karst aquifer of Jadro and Žrnovnica springs. Selak A; Reberski JL; Klobučar G; Grčić I Sci Total Environ; 2022 Jun; 825():153827. PubMed ID: 35157871 [TBL] [Abstract][Full Text] [Related]
57. The effects of rainfall on groundwater hydrogeochemistry and chemical weathering. He X; Zhou H; Wan J; Guo Y; Zhao H Environ Sci Pollut Res Int; 2023 Jan; 30(5):12152-12168. PubMed ID: 36104647 [TBL] [Abstract][Full Text] [Related]
58. Efficient injection of gas tracers into rivers: A tool to study Surface water-Groundwater interactions. Blanc T; Peel M; Brennwald MS; Kipfer R; Brunner P Water Res; 2024 May; 254():121375. PubMed ID: 38442605 [TBL] [Abstract][Full Text] [Related]
59. Using insights from water isotopes to improve simulation of surface water-groundwater interactions. Jafari T; Kiem AS; Javadi S; Nakamura T; Nishida K Sci Total Environ; 2021 Dec; 798():149253. PubMed ID: 34375237 [TBL] [Abstract][Full Text] [Related]
60. Tracking flowpaths in a complex karst system through tracer test and hydrogeochemical monitoring: Implications for groundwater protection (Gran Sasso, Italy). Lorenzi V; Banzato F; Barberio MD; Goeppert N; Goldscheider N; Gori F; Lacchini A; Manetta M; Medici G; Rusi S; Petitta M Heliyon; 2024 Jan; 10(2):e24663. PubMed ID: 38298644 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]