These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

160 related articles for article (PubMed ID: 37625792)

  • 1. Comparison of genomic-enabled cross selection criteria for the improvement of inbred line breeding populations.
    Danguy des Déserts A; Durand N; Servin B; Goudemand-Dugué E; Alliot JM; Ruiz D; Charmet G; Elsen JM; Bouchet S
    G3 (Bethesda); 2023 Nov; 13(11):. PubMed ID: 37625792
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Usefulness Criterion and Post-selection Parental Contributions in Multi-parental Crosses: Application to Polygenic Trait Introgression.
    Allier A; Moreau L; Charcosset A; Teyssèdre S; Lehermeier C
    G3 (Bethesda); 2019 May; 9(5):1469-1479. PubMed ID: 30819823
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Genetic Gain Increases by Applying the Usefulness Criterion with Improved Variance Prediction in Selection of Crosses.
    Lehermeier C; Teyssèdre S; Schön CC
    Genetics; 2017 Dec; 207(4):1651-1661. PubMed ID: 29038144
    [TBL] [Abstract][Full Text] [Related]  

  • 4. AI-assisted selection of mating pairs through simulation-based optimized progeny allocation strategies in plant breeding.
    Hamazaki K; Iwata H
    Front Plant Sci; 2024; 15():1361894. PubMed ID: 38817943
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Genomic mating in outbred species: predicting cross usefulness with additive and total genetic covariance matrices.
    Wolfe MD; Chan AW; Kulakow P; Rabbi I; Jannink JL
    Genetics; 2021 Nov; 219(3):. PubMed ID: 34740244
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Origin Specific Genomic Selection: A Simple Process To Optimize the Favorable Contribution of Parents to Progeny.
    Yang CJ; Sharma R; Gorjanc G; Hearne S; Powell W; Mackay I
    G3 (Bethesda); 2020 Jul; 10(7):2445-2455. PubMed ID: 32430306
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Multi-trait Improvement by Predicting Genetic Correlations in Breeding Crosses.
    Neyhart JL; Lorenz AJ; Smith KP
    G3 (Bethesda); 2019 Oct; 9(10):3153-3165. PubMed ID: 31358561
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Genomic selection in dairy cattle simulated populations.
    Seno LO; Guidolin DGF; Aspilcueta-Borquis RR; Nascimento GBD; Silva TBRD; Oliveira HN; Munari DP
    J Dairy Res; 2018 May; 85(2):125-132. PubMed ID: 29785919
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Improving selection decisions with mating information by accounting for Mendelian sampling variances looking two generations ahead.
    Niehoff TAM; Ten Napel J; Bijma P; Pook T; Wientjes YCJ; Hegedűs B; Calus MPL
    Genet Sel Evol; 2024 May; 56(1):41. PubMed ID: 38773363
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Improving the use of plant genetic resources to sustain breeding programs' efficiency.
    Sanchez D; Sadoun SB; Mary-Huard T; Allier A; Moreau L; Charcosset A
    Proc Natl Acad Sci U S A; 2023 Apr; 120(14):e2205780119. PubMed ID: 36972431
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Preservation of Genetic Variation in a Breeding Population for Long-Term Genetic Gain.
    Vanavermaete D; Fostier J; Maenhout S; De Baets B
    G3 (Bethesda); 2020 Aug; 10(8):2753-2762. PubMed ID: 32513654
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Improving Short- and Long-Term Genetic Gain by Accounting for Within-Family Variance in Optimal Cross-Selection.
    Allier A; Lehermeier C; Charcosset A; Moreau L; Teyssèdre S
    Front Genet; 2019; 10():1006. PubMed ID: 31737033
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Genomic prediction for hastening and improving efficiency of forward selection in conifer polycross mating designs: an example from white spruce.
    Lenz PRN; Nadeau S; Azaiez A; Gérardi S; Deslauriers M; Perron M; Isabel N; Beaulieu J; Bousquet J
    Heredity (Edinb); 2020 Apr; 124(4):562-578. PubMed ID: 31969718
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Optimised parent selection and minimum inbreeding mating in small aquaculture breeding schemes: a simulation study.
    Hely FS; Amer PR; Walker SP; Symonds JE
    Animal; 2013 Jan; 7(1):1-10. PubMed ID: 23031385
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Phenotypic Data from Inbred Parents Can Improve Genomic Prediction in Pearl Millet Hybrids.
    Liang Z; Gupta SK; Yeh CT; Zhang Y; Ngu DW; Kumar R; Patil HT; Mungra KD; Yadav DV; Rathore A; Srivastava RK; Gupta R; Yang J; Varshney RK; Schnable PS; Schnable JC
    G3 (Bethesda); 2018 Jul; 8(7):2513-2522. PubMed ID: 29794163
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Detecting directional and non-directional epistasis in bi-parental populations using genomic data.
    Rio S; Charcosset A; Moreau L; Mary-Huard T
    Genetics; 2023 Jul; 224(3):. PubMed ID: 37170627
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Identification of superior parental lines for biparental crossing via genomic prediction.
    Chung PY; Liao CT
    PLoS One; 2020; 15(12):e0243159. PubMed ID: 33270706
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Strategies for Selecting Crosses Using Genomic Prediction in Two Wheat Breeding Programs.
    Lado B; Battenfield S; Guzmán C; Quincke M; Singh RP; Dreisigacker S; Peña RJ; Fritz A; Silva P; Poland J; Gutiérrez L
    Plant Genome; 2017 Jul; 10(2):. PubMed ID: 28724066
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Imputation of non-genotyped F1 dams to improve genetic gain in swine crossbreeding programs.
    See GM; Fix JS; Schwab CR; Spangler ML
    J Anim Sci; 2022 May; 100(5):. PubMed ID: 35451025
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Genomic selection of crossing partners on basis of the expected mean and variance of their derived lines.
    Osthushenrich T; Frisch M; Herzog E
    PLoS One; 2017; 12(12):e0188839. PubMed ID: 29200436
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.