These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

126 related articles for article (PubMed ID: 37626032)

  • 1. Material symmetry recognition and property prediction accomplished by crystal capsule representation.
    Liang C; Rouzhahong Y; Ye C; Li C; Wang B; Li H
    Nat Commun; 2023 Aug; 14(1):5198. PubMed ID: 37626032
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Equivariant neural networks for inverse problems.
    Celledoni E; Ehrhardt MJ; Etmann C; Owren B; Schönlieb CB; Sherry F
    Inverse Probl; 2021 Aug; 37(8):085006. PubMed ID: 34334869
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Crystal Graph Convolutional Neural Networks for an Accurate and Interpretable Prediction of Material Properties.
    Xie T; Grossman JC
    Phys Rev Lett; 2018 Apr; 120(14):145301. PubMed ID: 29694125
    [TBL] [Abstract][Full Text] [Related]  

  • 4. General Graph Neural Network-Based Model To Accurately Predict Cocrystal Density and Insight from Data Quality and Feature Representation.
    Guo J; Sun M; Zhao X; Shi C; Su H; Guo Y; Pu X
    J Chem Inf Model; 2023 Feb; 63(4):1143-1156. PubMed ID: 36734616
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Roto-translation equivariant convolutional networks: Application to histopathology image analysis.
    Lafarge MW; Bekkers EJ; Pluim JPW; Duits R; Veta M
    Med Image Anal; 2021 Feb; 68():101849. PubMed ID: 33197715
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Learning Generalized Transformation Equivariant Representations Via AutoEncoding Transformations.
    Qi GJ; Zhang L; Lin F; Wang X
    IEEE Trans Pattern Anal Mach Intell; 2022 Apr; 44(4):2045-2057. PubMed ID: 33035159
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Fourier Series Expansion Based Filter Parametrization for Equivariant Convolutions.
    Xie Q; Zhao Q; Xu Z; Meng D
    IEEE Trans Pattern Anal Mach Intell; 2023 Apr; 45(4):4537-4551. PubMed ID: 35930514
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Crystal structure prediction of materials with high symmetry using differential evolution.
    Yang W; Dilanga Siriwardane EM; Dong R; Li Y; Hu J
    J Phys Condens Matter; 2021 Aug; 33(45):. PubMed ID: 34388740
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A modality-collaborative convolution and transformer hybrid network for unpaired multi-modal medical image segmentation with limited annotations.
    Liu H; Zhuang Y; Song E; Xu X; Ma G; Cetinkaya C; Hung CC
    Med Phys; 2023 Sep; 50(9):5460-5478. PubMed ID: 36864700
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Descriptor engineering in machine learning regression of electronic structure properties for 2D materials.
    Dau MT; Al Khalfioui M; Michon A; Reserbat-Plantey A; Vézian S; Boucaud P
    Sci Rep; 2023 Apr; 13(1):5426. PubMed ID: 37012307
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Study of crystal properties based on attention mechanism and crystal graph convolutional neural network.
    Wang B; Fan Q; Yue Y
    J Phys Condens Matter; 2022 Mar; 34(19):. PubMed ID: 35189607
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Application of Symmetry Functions to Large Chemical Spaces Using a Convolutional Neural Network.
    Selvaratnam B; Koodali RT; Miró P
    J Chem Inf Model; 2020 Apr; 60(4):1928-1935. PubMed ID: 32053367
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Learning global dependencies and multi-semantics within heterogeneous graph for predicting disease-related lncRNAs.
    Xuan P; Wang S; Cui H; Zhao Y; Zhang T; Wu P
    Brief Bioinform; 2022 Sep; 23(5):. PubMed ID: 36088549
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Machine learning prediction of activation energy in cubic Li-argyrodites with hierarchically encoding crystal structure-based (HECS) descriptors.
    Zhao Q; Avdeev M; Chen L; Shi S
    Sci Bull (Beijing); 2021 Jul; 66(14):1401-1408. PubMed ID: 36654366
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Direct Prediction of Phonon Density of States With Euclidean Neural Networks.
    Chen Z; Andrejevic N; Smidt T; Ding Z; Xu Q; Chi YT; Nguyen QT; Alatas A; Kong J; Li M
    Adv Sci (Weinh); 2021 Jun; 8(12):e2004214. PubMed ID: 34165895
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Lorentz group equivariant autoencoders.
    Hao Z; Kansal R; Duarte J; Chernyavskaya N
    Eur Phys J C Part Fields; 2023; 83(6):485. PubMed ID: 37303461
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Bandgap prediction of two-dimensional materials using machine learning.
    Zhang Y; Xu W; Liu G; Zhang Z; Zhu J; Li M
    PLoS One; 2021; 16(8):e0255637. PubMed ID: 34388173
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Nested Hyperbolic Spaces for Dimensionality Reduction and Hyperbolic NN Design.
    Fan X; Yang CH; Vemuri BC
    Proc IEEE Comput Soc Conf Comput Vis Pattern Recognit; 2022 Jun; 2022():356-365. PubMed ID: 36911245
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Hierarchical, rotation-equivariant neural networks to select structural models of protein complexes.
    Eismann S; Townshend RJL; Thomas N; Jagota M; Jing B; Dror RO
    Proteins; 2021 May; 89(5):493-501. PubMed ID: 33289162
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Graph network based deep learning of bandgaps.
    Li XG; Blaiszik B; Schwarting ME; Jacobs R; Scourtas A; Schmidt KJ; Voyles PM; Morgan D
    J Chem Phys; 2021 Oct; 155(15):154702. PubMed ID: 34686040
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.