These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

229 related articles for article (PubMed ID: 37627619)

  • 21. Effects of aging and caloric restriction on mitochondrial energy production in gastrocnemius muscle and heart.
    Drew B; Phaneuf S; Dirks A; Selman C; Gredilla R; Lezza A; Barja G; Leeuwenburgh C
    Am J Physiol Regul Integr Comp Physiol; 2003 Feb; 284(2):R474-80. PubMed ID: 12388443
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Altered skeletal muscle subsarcolemmal mitochondrial compartment during catch-up fat after caloric restriction.
    Crescenzo R; Lionetti L; Mollica MP; Ferraro M; D'Andrea E; Mainieri D; Dulloo AG; Liverini G; Iossa S
    Diabetes; 2006 Aug; 55(8):2286-93. PubMed ID: 16873692
    [TBL] [Abstract][Full Text] [Related]  

  • 23. [Regulation of the mitochondrial ATP-sensitive potassium channel in rat uterus cells by ROS].
    Badziuk OB; Mazur IuIu; Kosterin SO
    Ukr Biokhim Zh (1999); 2011; 83(3):48-57. PubMed ID: 21888054
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Mitochondria in exercise-induced oxidative stress.
    Di Meo S; Venditti P
    Biol Signals Recept; 2001; 10(1-2):125-40. PubMed ID: 11223645
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Reactive oxygen species and calcium signals in skeletal muscle: A crosstalk involved in both normal signaling and disease.
    Espinosa A; Henríquez-Olguín C; Jaimovich E
    Cell Calcium; 2016 Sep; 60(3):172-9. PubMed ID: 26965208
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Reactive oxygen species derived from NADPH oxidase 1 and mitochondria mediate angiotensin II-induced smooth muscle cell senescence.
    Tsai IC; Pan ZC; Cheng HP; Liu CH; Lin BT; Jiang MJ
    J Mol Cell Cardiol; 2016 Sep; 98():18-27. PubMed ID: 27381955
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Mitochondrial function and antioxidative defence in human muscle: effects of endurance training and oxidative stress.
    Tonkonogi M; Walsh B; Svensson M; Sahlin K
    J Physiol; 2000 Oct; 528 Pt 2(Pt 2):379-88. PubMed ID: 11034627
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Regulation of NADPH oxidases in skeletal muscle.
    Ferreira LF; Laitano O
    Free Radic Biol Med; 2016 Sep; 98():18-28. PubMed ID: 27184955
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Effects of bioenergetics, temperature and cadmium on liver mitochondria reactive oxygen species production and consumption.
    Okoye CN; MacDonald-Jay N; Kamunde C
    Aquat Toxicol; 2019 Sep; 214():105264. PubMed ID: 31377504
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Physiological Ca
    Li A; Yi J; Li X; Zhou J
    Front Physiol; 2020; 11():595800. PubMed ID: 33192612
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Skeletal muscle oxidative capacity in rats fed high-fat diet.
    Iossa S; Mollica MP; Lionetti L; Crescenzo R; Botta M; Liverini G
    Int J Obes Relat Metab Disord; 2002 Jan; 26(1):65-72. PubMed ID: 11791148
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Rapid regulation of substrate use for oxidative phosphorylation during a single session of high intensity interval or aerobic exercises in different rat skeletal muscles.
    Martins EL; Ricardo JC; de-Souza-Ferreira E; Camacho-Pereira J; Ramos-Filho D; Galina A
    Comp Biochem Physiol B Biochem Mol Biol; 2018 Mar; 217():40-50. PubMed ID: 29222029
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Hyperammonaemia-induced skeletal muscle mitochondrial dysfunction results in cataplerosis and oxidative stress.
    Davuluri G; Allawy A; Thapaliya S; Rennison JH; Singh D; Kumar A; Sandlers Y; Van Wagoner DR; Flask CA; Hoppel C; Kasumov T; Dasarathy S
    J Physiol; 2016 Dec; 594(24):7341-7360. PubMed ID: 27558544
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Influence of exercise amount and intensity on long-term weight loss maintenance and skeletal muscle mitochondrial ROS production in humans.
    Larsen S; Dandanell S; Kristensen KB; Jørgensen SD; Dela F; Helge JW
    Appl Physiol Nutr Metab; 2019 Sep; 44(9):958-964. PubMed ID: 30664360
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Activation of aconitase in mouse fast-twitch skeletal muscle during contraction-mediated oxidative stress.
    Zhang SJ; Sandström ME; Lanner JT; Thorell A; Westerblad H; Katz A
    Am J Physiol Cell Physiol; 2007 Sep; 293(3):C1154-9. PubMed ID: 17615160
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Mitochondrial disease in mouse results in increased oxidative stress.
    Esposito LA; Melov S; Panov A; Cottrell BA; Wallace DC
    Proc Natl Acad Sci U S A; 1999 Apr; 96(9):4820-5. PubMed ID: 10220377
    [TBL] [Abstract][Full Text] [Related]  

  • 37. [Exercise training in hypoxia prevents hypoxia induced mitochondrial DNA oxidative damage in skeletal muscle].
    Bo H; Li L; Duan FQ; Zhu J
    Sheng Li Xue Bao; 2014 Oct; 66(5):597-604. PubMed ID: 25332006
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Fatty acids acutely enhance insulin-induced oxidative stress and cause insulin resistance by increasing mitochondrial reactive oxygen species (ROS) generation and nuclear factor-κB inhibitor (IκB)-nuclear factor-κB (NFκB) activation in rat muscle, in the absence of mitochondrial dysfunction.
    Barazzoni R; Zanetti M; Gortan Cappellari G; Semolic A; Boschelle M; Codarin E; Pirulli A; Cattin L; Guarnieri G
    Diabetologia; 2012 Mar; 55(3):773-82. PubMed ID: 22159911
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Reciprocal amplification of ROS and Ca(2+) signals in stressed mdx dystrophic skeletal muscle fibers.
    Shkryl VM; Martins AS; Ullrich ND; Nowycky MC; Niggli E; Shirokova N
    Pflugers Arch; 2009 Sep; 458(5):915-28. PubMed ID: 19387681
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Physical exercise in aging human skeletal muscle increases mitochondrial calcium uniporter expression levels and affects mitochondria dynamics.
    Zampieri S; Mammucari C; Romanello V; Barberi L; Pietrangelo L; Fusella A; Mosole S; Gherardi G; Höfer C; Löfler S; Sarabon N; Cvecka J; Krenn M; Carraro U; Kern H; Protasi F; Musarò A; Sandri M; Rizzuto R
    Physiol Rep; 2016 Dec; 4(24):. PubMed ID: 28039397
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.