These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

287 related articles for article (PubMed ID: 37627891)

  • 1. Mechanism Analysis of Vascular Calcification Based on Fluid Dynamics.
    Xu S; Wang F; Mai P; Peng Y; Shu X; Nie R; Zhang H
    Diagnostics (Basel); 2023 Aug; 13(16):. PubMed ID: 37627891
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A new multiphysics model for the physiological responses of vascular endothelial cells to fluid shear stress.
    Kang HG; Shim EB; Chang KS
    J Physiol Sci; 2007 Oct; 57(5):299-309. PubMed ID: 17963593
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Computational Fluid Dynamics (CFD) Model for Analysing the Role of Shear Stress in Angiogenesis in Rheumatoid Arthritis.
    Motlana MK; Ngoepe MN
    Int J Mol Sci; 2023 Apr; 24(9):. PubMed ID: 37175591
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Flow detection and calcium signalling in vascular endothelial cells.
    Ando J; Yamamoto K
    Cardiovasc Res; 2013 Jul; 99(2):260-8. PubMed ID: 23572234
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Mechanical and chemical cues synergistically promote human venous smooth muscle cell osteogenesis through integrin β1-ERK1/2 signaling: A cell model of hemodialysis fistula calcification.
    Yang CY; Chang PY; Wu BS; Tarng DC; Lee OK
    FASEB J; 2021 Dec; 35(12):e22042. PubMed ID: 34758125
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Primary Cilia and Atherosclerosis.
    Wang ZM; Gao XF; Zhang JJ; Chen SL
    Front Physiol; 2021; 12():640774. PubMed ID: 33633590
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Flow shear stress regulates endothelial barrier function and expression of angiogenic factors in a 3D microfluidic tumor vascular model.
    Buchanan CF; Verbridge SS; Vlachos PP; Rylander MN
    Cell Adh Migr; 2014; 8(5):517-24. PubMed ID: 25482628
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effects of shear stress on endothelial cells: go with the flow.
    Chistiakov DA; Orekhov AN; Bobryshev YV
    Acta Physiol (Oxf); 2017 Feb; 219(2):382-408. PubMed ID: 27246807
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Stress distribution in the walls of major arteries: implications for atherogenesis.
    Mishani S; Belhoul-Fakir H; Lagat C; Jansen S; Evans B; Lawrence-Brown M
    Quant Imaging Med Surg; 2021 Aug; 11(8):3494-3505. PubMed ID: 34341726
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A comparison of 4D flow MRI-derived wall shear stress with computational fluid dynamics methods for intracranial aneurysms and carotid bifurcations - A review.
    Szajer J; Ho-Shon K
    Magn Reson Imaging; 2018 May; 48():62-69. PubMed ID: 29223732
    [TBL] [Abstract][Full Text] [Related]  

  • 11. New molecular mechanisms for cardiovascular disease:blood flow sensing mechanism in vascular endothelial cells.
    Yamamoto K; Ando J
    J Pharmacol Sci; 2011; 116(4):323-31. PubMed ID: 21757846
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effect of carotid artery geometry on the magnitude and distribution of wall shear stress gradients.
    Wells DR; Archie JP; Kleinstreuer C
    J Vasc Surg; 1996 Apr; 23(4):667-78. PubMed ID: 8627904
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Computational fluid dynamics based Taguchi analysis on shear stress in microfluidic cerebrovascular channels.
    Garud KS; Jeong S; Lee MY
    Int J Numer Method Biomed Eng; 2023 Jul; 39(7):e3733. PubMed ID: 37221673
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Hemodynamics and Wall Shear Stress of Blood Vessels in Aortic Coarctation with Computational Fluid Dynamics Simulation.
    Kim GB; Park KH; Kim SJ
    Molecules; 2022 Feb; 27(4):. PubMed ID: 35209192
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Wall shear stress on LDL accumulation in human RCAs.
    Soulis JV; Fytanidis DK; Papaioannou VC; Giannoglou GD
    Med Eng Phys; 2010 Oct; 32(8):867-77. PubMed ID: 20580302
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Regulation of the sodium-phosphate cotransporter Pit-1 and its role in vascular calcification.
    Gonzalez M; Martínez R; Amador C; Michea L
    Curr Vasc Pharmacol; 2009 Oct; 7(4):506-12. PubMed ID: 19485893
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Distribution of shear stress over smooth muscle cells in deformable arterial wall.
    Dabagh M; Jalali P; Konttinen YT; Sarkomaa P
    Med Biol Eng Comput; 2008 Jul; 46(7):649-57. PubMed ID: 18386089
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effects of cyclic motion on coronary blood flow.
    Hasan M; Rubenstein DA; Yin W
    J Biomech Eng; 2013 Dec; 135(12):121002. PubMed ID: 24008675
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Molecular and Cellular Mechanisms that Induce Arterial Calcification by Indoxyl Sulfate and P-Cresyl Sulfate.
    Opdebeeck B; D'Haese PC; Verhulst A
    Toxins (Basel); 2020 Jan; 12(1):. PubMed ID: 31963891
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Vascular calcification: pathobiological mechanisms and clinical implications.
    Johnson RC; Leopold JA; Loscalzo J
    Circ Res; 2006 Nov; 99(10):1044-59. PubMed ID: 17095733
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.