These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

145 related articles for article (PubMed ID: 37628218)

  • 1. Analysis of Vibration Signals Based on Machine Learning for Crack Detection in a Low-Power Wind Turbine.
    Rangel-Rodriguez AH; Granados-Lieberman D; Amezquita-Sanchez JP; Bueno-Lopez M; Valtierra-Rodriguez M
    Entropy (Basel); 2023 Aug; 25(8):. PubMed ID: 37628218
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Acoustic-Signal-Based Damage Detection of Wind Turbine Blades-A Review.
    Ding S; Yang C; Zhang S
    Sensors (Basel); 2023 May; 23(11):. PubMed ID: 37299714
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A data driven approach for condition monitoring of wind turbine blade using vibration signals through best-first tree algorithm and functional trees algorithm: A comparative study.
    Joshuva A; Sugumaran V
    ISA Trans; 2017 Mar; 67():160-172. PubMed ID: 28189258
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Wind turbine blades fault diagnosis based on vibration dataset analysis.
    Ogaili AAF; Abdulhady Jaber A; Hamzah MN
    Data Brief; 2023 Aug; 49():109414. PubMed ID: 37520651
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Autonomous Sensor System for Low-Capacity Wind Turbine Blade Vibration Measurement.
    Muxica D; Rivera S; Orchard ME; Ahumada C; Jaramillo F; Bravo F; Gutiérrez JM; Astroza R
    Sensors (Basel); 2024 Mar; 24(6):. PubMed ID: 38543996
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Multi-Fault Detection and Classification of Wind Turbines Using Stacking Classifier.
    Waqas Khan P; Byun YC
    Sensors (Basel); 2022 Sep; 22(18):. PubMed ID: 36146299
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Vibration Analysis for Fault Detection of Wind Turbine Drivetrains-A Comprehensive Investigation.
    Teng W; Ding X; Tang S; Xu J; Shi B; Liu Y
    Sensors (Basel); 2021 Mar; 21(5):. PubMed ID: 33804512
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effects of Graphene Reinforcement on Static Bending, Free Vibration, and Torsion of Wind Turbine Blades.
    Kim HJ; Cho JR
    Materials (Basel); 2024 Jul; 17(13):. PubMed ID: 38998411
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Wind turbine icing characteristics and icing-induced power losses to utility-scale wind turbines.
    Gao L; Hu H
    Proc Natl Acad Sci U S A; 2021 Oct; 118(42):. PubMed ID: 34635597
    [TBL] [Abstract][Full Text] [Related]  

  • 10. π-FBG Fiber Optic Acoustic Emission Sensor for the Crack Detection of Wind Turbine Blades.
    Yan Q; Che X; Li S; Wang G; Liu X
    Sensors (Basel); 2023 Sep; 23(18):. PubMed ID: 37765878
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Intelligent fault detection scheme for constant-speed wind turbines based on improved multiscale fuzzy entropy and adaptive chaotic Aquila optimization-based support vector machine.
    Wang Z; Li G; Yao L; Cai Y; Lin T; Zhang J; Dong H
    ISA Trans; 2023 Jul; 138():582-602. PubMed ID: 36966057
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Low-Pass Filtering Empirical Wavelet Transform Machine Learning Based Fault Diagnosis for Combined Fault of Wind Turbines.
    Xiao Y; Xue J; Li M; Yang W
    Entropy (Basel); 2021 Jul; 23(8):. PubMed ID: 34441115
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Ultrasound-based identification of damage in wind turbine blades using novelty detection.
    Oliveira MA; Simas Filho EF; Albuquerque MCS; Santos YTB; da Silva IC; Farias CTT
    Ultrasonics; 2020 Dec; 108():106166. PubMed ID: 32526526
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Numerical and Experimental Analysis of Horizontal-Axis Wind Turbine Blade Fatigue Life.
    Shah I; Khan A; Ali M; Shahab S; Aziz S; Noon MAA; Tipu JAK
    Materials (Basel); 2023 Jul; 16(13):. PubMed ID: 37445118
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Damage Detection Based on Static Strain Responses Using FBG in a Wind Turbine Blade.
    Tian S; Yang Z; Chen X; Xie Y
    Sensors (Basel); 2015 Aug; 15(8):19992-20005. PubMed ID: 26287200
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Machine Learning for Long Cycle Maintenance Prediction of Wind Turbine.
    Yeh CH; Lin MH; Lin CH; Yu CE; Chen MJ
    Sensors (Basel); 2019 Apr; 19(7):. PubMed ID: 30965619
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Automatic crack detection method for loaded coal in vibration failure process.
    Li C; Ai D
    PLoS One; 2017; 12(10):e0185750. PubMed ID: 28973032
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Wind turbine blade waste in 2050.
    Liu P; Barlow CY
    Waste Manag; 2017 Apr; 62():229-240. PubMed ID: 28215972
    [TBL] [Abstract][Full Text] [Related]  

  • 19. An SVM-based solution for fault detection in wind turbines.
    Santos P; Villa LF; Reñones A; Bustillo A; Maudes J
    Sensors (Basel); 2015 Mar; 15(3):5627-48. PubMed ID: 25760051
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Aspects of structural health and condition monitoring of offshore wind turbines.
    Antoniadou I; Dervilis N; Papatheou E; Maguire AE; Worden K
    Philos Trans A Math Phys Eng Sci; 2015 Feb; 373(2035):. PubMed ID: 25583864
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.