These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
122 related articles for article (PubMed ID: 37628254)
1. Efficient Numerical Simulation of Biochemotaxis Phenomena in Fluid Environments. Zhou X; Bian G; Wang Y; Xiao X Entropy (Basel); 2023 Aug; 25(8):. PubMed ID: 37628254 [TBL] [Abstract][Full Text] [Related]
2. Radial Basis Function Finite Difference Method Based on Oseen Iteration for Solving Two-Dimensional Navier-Stokes Equations. Mu L; Feng X Entropy (Basel); 2023 May; 25(5):. PubMed ID: 37238559 [TBL] [Abstract][Full Text] [Related]
3. A semi-implicit augmented IIM for Navier-Stokes equations with open, traction, or free boundary conditions. Li Z; Xiao L; Cai Q; Zhao H; Luo R J Comput Phys; 2015 Aug; 297():182-193. PubMed ID: 27087702 [TBL] [Abstract][Full Text] [Related]
4. New Finite Difference Methods Based on IIM for Inextensible Interfaces in Incompressible Flows. Li Z; Lai MC East Asian J Applied Math; 2011 Jan; 1(2):155-171. PubMed ID: 23795308 [TBL] [Abstract][Full Text] [Related]
5. The meshless local Petrov-Galerkin method based on moving Kriging interpolation for solving the time fractional Navier-Stokes equations. Thamareerat N; Luadsong A; Aschariyaphotha N Springerplus; 2016; 5():417. PubMed ID: 27099822 [TBL] [Abstract][Full Text] [Related]
6. A numerical efficient splitting method for the solution of two dimensional susceptible infected recovered epidemic model of whooping cough dynamics: Applications in bio-medical engineering. Ahmed N; Ali M; Rafiq M; Khan I; Nisar KS; Rehman MA; Ahmad MO Comput Methods Programs Biomed; 2020 Jul; 190():105350. PubMed ID: 32078958 [TBL] [Abstract][Full Text] [Related]
7. An operator splitting scheme for numerical simulation of spinodal decomposition and microstructure evolution of binary alloys. Shah A; Ayub S; Sohaib M; Saeed S; Khan SA; Abbas S; Shah SK Heliyon; 2023 Jun; 9(6):e16597. PubMed ID: 37292351 [TBL] [Abstract][Full Text] [Related]
8. Numerical simulation of particulate flows using a hybrid of finite difference and boundary integral methods. Bhattacharya A; Kesarkar T Phys Rev E; 2016 Oct; 94(4-1):043309. PubMed ID: 27841548 [TBL] [Abstract][Full Text] [Related]
9. Multiple-distribution-function lattice Boltzmann method for convection-diffusion-system-based incompressible Navier-Stokes equations. Chai Z; Shi B; Zhan C Phys Rev E; 2022 Nov; 106(5-2):055305. PubMed ID: 36559463 [TBL] [Abstract][Full Text] [Related]
10. A hybrid explicit implicit staggered grid finite-difference scheme for the first-order acoustic wave equation modeling. Liang W; Wang Y; Cao J; Iturrarán-Viveros U Sci Rep; 2022 Jun; 12(1):10967. PubMed ID: 35768539 [TBL] [Abstract][Full Text] [Related]
11. A three-dimensional non-hydrostatic coupled model for free surface - Subsurface variable - Density flows. Shokri N; Namin MM; Farhoudi J J Contam Hydrol; 2018 Sep; 216():38-49. PubMed ID: 30126718 [TBL] [Abstract][Full Text] [Related]
12. Solving the Incompressible Surface Stokes Equation by Standard Velocity-Correction Projection Methods. Zhao Y; Feng X Entropy (Basel); 2022 Sep; 24(10):. PubMed ID: 37420358 [TBL] [Abstract][Full Text] [Related]
13. COMPUTING ILL-POSED TIME-REVERSED 2D NAVIER-STOKES EQUATIONS, USING A STABILIZED EXPLICIT FINITE DIFFERENCE SCHEME MARCHING BACKWARD IN TIME. Carasso AS Inverse Probl Sci Eng; 2020; 28(7):. PubMed ID: 34131431 [TBL] [Abstract][Full Text] [Related]
14. An efficient semi-implicit method for three-dimensional non-hydrostatic flows in compliant arterial vessels. Fambri F; Dumbser M; Casulli V Int J Numer Method Biomed Eng; 2014 Nov; 30(11):1170-98. PubMed ID: 24842268 [TBL] [Abstract][Full Text] [Related]
15. Linear Full Decoupling, Velocity Correction Method for Unsteady Thermally Coupled Incompressible Magneto-Hydrodynamic Equations. Zhang Z; Su H; Feng X Entropy (Basel); 2022 Aug; 24(8):. PubMed ID: 36010823 [TBL] [Abstract][Full Text] [Related]
16. A three-dimensional parabolic equation model of sound propagation using higher-order operator splitting and Padé approximants. Lin YT; Collis JM; Duda TF J Acoust Soc Am; 2012 Nov; 132(5):EL364-70. PubMed ID: 23145696 [TBL] [Abstract][Full Text] [Related]
17. Numerical simulation of incompressible viscous flow in deforming domains. Colella P; Trebotich DP Proc Natl Acad Sci U S A; 1999 May; 96(10):5378-81. PubMed ID: 10318891 [TBL] [Abstract][Full Text] [Related]
18. Numerics made easy: solving the Navier-Stokes equation for arbitrary channel cross-sections using Microsoft Excel. Richter C; Kotz F; Giselbrecht S; Helmer D; Rapp BE Biomed Microdevices; 2016 Jun; 18(3):52. PubMed ID: 27233665 [TBL] [Abstract][Full Text] [Related]
19. The Optimal Error Estimate of the Fully Discrete Locally Stabilized Finite Volume Method for the Non-Stationary Navier-Stokes Problem. He G; Zhang Y Entropy (Basel); 2022 May; 24(6):. PubMed ID: 35741489 [TBL] [Abstract][Full Text] [Related]
20. Kinetically reduced local Navier-Stokes equations for simulation of incompressible viscous flows. Borok S; Ansumali S; Karlin IV Phys Rev E Stat Nonlin Soft Matter Phys; 2007 Dec; 76(6 Pt 2):066704. PubMed ID: 18233940 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]