These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

168 related articles for article (PubMed ID: 37628812)

  • 21. Regulation of phenylacetic acid uptake is σ54 dependent in Pseudomonas putida CA-3.
    O' Leary ND; O' Mahony MM; Dobson AD
    BMC Microbiol; 2011 Oct; 11():229. PubMed ID: 21995721
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Discovery of the Pseudomonas Polyyne Protegencin by a Phylogeny-Guided Study of Polyyne Biosynthetic Gene Cluster Diversity.
    Mullins AJ; Webster G; Kim HJ; Zhao J; Petrova YD; Ramming CE; Jenner M; Murray JAH; Connor TR; Hertweck C; Challis GL; Mahenthiralingam E
    mBio; 2021 Aug; 12(4):e0071521. PubMed ID: 34340549
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Coregulation by phenylacetyl-coenzyme A-responsive PaaX integrates control of the upper and lower pathways for catabolism of styrene by Pseudomonas sp. strain Y2.
    del Peso-Santos T; Bartolomé-Martín D; Fernández C; Alonso S; García JL; Díaz E; Shingler V; Perera J
    J Bacteriol; 2006 Jul; 188(13):4812-21. PubMed ID: 16788190
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Pseudomonas species isolated via high-throughput screening significantly protect cotton plants against verticillium wilt.
    Tao X; Zhang H; Gao M; Li M; Zhao T; Guan X
    AMB Express; 2020 Oct; 10(1):193. PubMed ID: 33118043
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Taxis of Pseudomonas putida F1 toward phenylacetic acid is mediated by the energy taxis receptor Aer2.
    Luu RA; Schneider BJ; Ho CC; Nesteryuk V; Ngwesse SE; Liu X; Parales JV; Ditty JL; Parales RE
    Appl Environ Microbiol; 2013 Apr; 79(7):2416-23. PubMed ID: 23377939
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Biosynthesis of the bacterial antibiotic 3,7-dihydroxytropolone through enzymatic salvaging of catabolic shunt products.
    Höing L; Sowa ST; Toplak M; Reinhardt JK; Jakob R; Maier T; Lill MA; Teufel R
    Chem Sci; 2024 May; 15(20):7749-7756. PubMed ID: 38784727
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Molecular characterization of the phenylacetic acid catabolic pathway in Pseudomonas putida U: the phenylacetyl-CoA catabolon.
    Olivera ER; Miñambres B; García B; Muñiz C; Moreno MA; Ferrández A; Díaz E; García JL; Luengo JM
    Proc Natl Acad Sci U S A; 1998 May; 95(11):6419-24. PubMed ID: 9600981
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Draft genome sequence of high-siderophore-yielding Pseudomonas sp. strain HYS.
    Gao J; Yu X; Xie Z
    J Bacteriol; 2012 Aug; 194(15):4121. PubMed ID: 22815441
    [TBL] [Abstract][Full Text] [Related]  

  • 29. The Phenylacetic Acid Catabolic Pathway Regulates Antibiotic and Oxidative Stress Responses in Acinetobacter.
    Hooppaw AJ; McGuffey JC; Di Venanzio G; Ortiz-Marquez JC; Weber BS; Lightly TJ; van Opijnen T; Scott NE; Cardona ST; Feldman MF
    mBio; 2022 Jun; 13(3):e0186321. PubMed ID: 35467424
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Functional genomics by NMR spectroscopy. Phenylacetate catabolism in Escherichia coli.
    Ismail W; El-Said Mohamed M; Wanner BL; Datsenko KA; Eisenreich W; Rohdich F; Bacher A; Fuchs G
    Eur J Biochem; 2003 Jul; 270(14):3047-54. PubMed ID: 12846838
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Phenylacetic acid catabolism and its transcriptional regulation in Corynebacterium glutamicum.
    Chen X; Kohl TA; Rückert C; Rodionov DA; Li LH; Ding JY; Kalinowski J; Liu SJ
    Appl Environ Microbiol; 2012 Aug; 78(16):5796-804. PubMed ID: 22685150
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Novel biodegradable aromatic plastics from a bacterial source. Genetic and biochemical studies on a route of the phenylacetyl-coa catabolon.
    García B; Olivera ER; Miñambres B; Fernández-Valverde M; Cañedo LM; Prieto MA; García JL; Martínez M; Luengo JM
    J Biol Chem; 1999 Oct; 274(41):29228-41. PubMed ID: 10506180
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Inductive Production of the Iron-Chelating 2-Pyridones Benefits the Producing Fungus To Compete for Diverse Niches.
    Chen B; Sun Y; Li S; Yin Y; Wang C
    mBio; 2021 Dec; 12(6):e0327921. PubMed ID: 34903054
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Insights on the regulation of the phenylacetate degradation pathway from Escherichia coli.
    Fernández C; Díaz E; García JL
    Environ Microbiol Rep; 2014 Jun; 6(3):239-50. PubMed ID: 24983528
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Arogenate dehydratases can modulate the levels of phenylacetic acid in Arabidopsis.
    Aoi Y; Oikawa A; Sasaki R; Huang J; Hayashi KI; Kasahara H
    Biochem Biophys Res Commun; 2020 Mar; 524(1):83-88. PubMed ID: 31980164
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Arhodomonas sp. strain Seminole and its genetic potential to degrade aromatic compounds under high-salinity conditions.
    Dalvi S; Nicholson C; Najar F; Roe BA; Canaan P; Hartson SD; Fathepure BZ
    Appl Environ Microbiol; 2014 Nov; 80(21):6664-76. PubMed ID: 25149520
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Transcriptional regulation of the divergent paa catabolic operons for phenylacetic acid degradation in Escherichia coli.
    Ferrández A; García JL; Díaz E
    J Biol Chem; 2000 Apr; 275(16):12214-22. PubMed ID: 10766858
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Regulation of ferulic catabolic genes in Pseudomonas fluorescens BF13: involvement of a MarR family regulator.
    Calisti C; Ficca AG; Barghini P; Ruzzi M
    Appl Microbiol Biotechnol; 2008 Sep; 80(3):475-83. PubMed ID: 18575856
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Biochemical and genetic analyses of ferulic acid catabolism in Pseudomonas sp. Strain HR199.
    Overhage J; Priefert H; Steinbüchel A
    Appl Environ Microbiol; 1999 Nov; 65(11):4837-47. PubMed ID: 10543794
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Metabolic engineering of Escherichia coli to high efficient synthesis phenylacetic acid from phenylalanine.
    Zhang L; Liu Q; Pan H; Li X; Guo D
    AMB Express; 2017 Dec; 7(1):105. PubMed ID: 28549374
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.