These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

166 related articles for article (PubMed ID: 37628812)

  • 41. Phenylacetate catabolism in Rhodococcus sp. strain RHA1: a central pathway for degradation of aromatic compounds.
    Navarro-Llorens JM; Patrauchan MA; Stewart GR; Davies JE; Eltis LD; Mohn WW
    J Bacteriol; 2005 Jul; 187(13):4497-504. PubMed ID: 15968060
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Biosynthesis of Ditropolonyl Sulfide, an Antibacterial Compound Produced by Burkholderia cepacia Complex Strain R-12632.
    Depoorter E; Coenye T; Vandamme P
    Appl Environ Microbiol; 2021 Oct; 87(22):e0116921. PubMed ID: 34524894
    [TBL] [Abstract][Full Text] [Related]  

  • 43. The two-component regulators GacS and GacA positively regulate a nonfluorescent siderophore through the Gac/Rsm signaling cascade in high-siderophore-yielding Pseudomonas sp. strain HYS.
    Yu X; Chen M; Jiang Z; Hu Y; Xie Z
    J Bacteriol; 2014 Sep; 196(18):3259-70. PubMed ID: 24982309
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Synthetic cystic fibrosis sputum medium diminishes Burkholderia cenocepacia antifungal activity against Aspergillus fumigatus independently of phenylacetic acid production.
    Lightly TJ; Phung RR; Sorensen JL; Cardona ST
    Can J Microbiol; 2017 May; 63(5):427-438. PubMed ID: 28178425
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Purification and biochemical characterization of phenylacetyl-CoA ligase from Pseudomonas putida. A specific enzyme for the catabolism of phenylacetic acid.
    Martínez-Blanco H; Reglero A; Rodriguez-Aparicio LB; Luengo JM
    J Biol Chem; 1990 Apr; 265(12):7084-90. PubMed ID: 2324116
    [TBL] [Abstract][Full Text] [Related]  

  • 46. A functional phenylacetic acid catabolic pathway is required for full pathogenicity of Burkholderia cenocepacia in the Caenorhabditis elegans host model.
    Law RJ; Hamlin JN; Sivro A; McCorrister SJ; Cardama GA; Cardona ST
    J Bacteriol; 2008 Nov; 190(21):7209-18. PubMed ID: 18776009
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Occurrence, Function, and Biosynthesis of the Natural Auxin Phenylacetic Acid (PAA) in Plants.
    Perez VC; Zhao H; Lin M; Kim J
    Plants (Basel); 2023 Jan; 12(2):. PubMed ID: 36678978
    [TBL] [Abstract][Full Text] [Related]  

  • 48. A green fluorescent protein-based whole-cell bioreporter for the detection of phenylacetic acid.
    Kim J; Jeon CO; Park W
    J Microbiol Biotechnol; 2007 Oct; 17(10):1727-32. PubMed ID: 18156794
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Intracellular 2-keto-3-deoxy-6-phosphogluconate is the signal for carbon catabolite repression of phenylacetic acid metabolism in Pseudomonas putida KT2440.
    Kim J; Yeom J; Jeon CO; Park W
    Microbiology (Reading); 2009 Jul; 155(Pt 7):2420-2428. PubMed ID: 19406896
    [TBL] [Abstract][Full Text] [Related]  

  • 50. The styrene-responsive StyS/StyR regulation system controls expression of an auxiliary phenylacetyl-coenzyme A ligase: implications for rapid metabolic coupling of the styrene upper- and lower-degradative pathways.
    del Peso-Santos T; Shingler V; Perera J
    Mol Microbiol; 2008 Jul; 69(2):317-30. PubMed ID: 18544072
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Phenylacetic acid-producing Rhizoctonia solani represses the biosynthesis of nematicidal compounds in vitro and influences biocontrol of Meloidogyne incognita in tomato by Pseudomonas fluorescens strain CHA0 and its GM derivatives.
    Siddiqui IA; Shaukat SS
    J Appl Microbiol; 2005; 98(1):43-55. PubMed ID: 15610416
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Auxin Biosynthesis: Are the Indole-3-Acetic Acid and Phenylacetic Acid Biosynthesis Pathways Mirror Images?
    Cook SD; Nichols DS; Smith J; Chourey PS; McAdam EL; Quittenden L; Ross JJ
    Plant Physiol; 2016 Jun; 171(2):1230-41. PubMed ID: 27208245
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Structural and functional analysis of the carotenoid biosynthesis genes of a Pseudomonas strain isolated from the excrement of Autumn Darter.
    Fukaya Y; Takemura M; Koyanagi T; Maoka T; Shindo K; Misawa N
    Biosci Biotechnol Biochem; 2018 Jun; 82(6):1043-1052. PubMed ID: 29191130
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Genomic insights into the broad antifungal activity, plant-probiotic properties, and their regulation, in Pseudomonas donghuensis strain SVBP6.
    Agaras BC; Iriarte A; Valverde CF
    PLoS One; 2018; 13(3):e0194088. PubMed ID: 29538430
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Oxidative Catabolism of (+)-Pinoresinol Is Initiated by an Unusual Flavocytochrome Encoded by Translationally Coupled Genes within a Cluster of (+)-Pinoresinol-Coinduced Genes in
    Shettigar M; Balotra S; Kasprzak A; Pearce SL; Lacey MJ; Taylor MC; Liu JW; Cahill D; Oakeshott JG; Pandey G
    Appl Environ Microbiol; 2020 May; 86(10):. PubMed ID: 32198167
    [No Abstract]   [Full Text] [Related]  

  • 56. Copurification of the FpvA ferric pyoverdin receptor of Pseudomonas aeruginosa with its iron-free ligand: implications for siderophore-mediated iron transport.
    Schalk IJ; Kyslik P; Prome D; van Dorsselaer A; Poole K; Abdallah MA; Pattus F
    Biochemistry; 1999 Jul; 38(29):9357-65. PubMed ID: 10413510
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Genetic analyses and molecular characterization of the pathways involved in the conversion of 2-phenylethylamine and 2-phenylethanol into phenylacetic acid in Pseudomonas putida U.
    Arias S; Olivera ER; Arcos M; Naharro G; Luengo JM
    Environ Microbiol; 2008 Feb; 10(2):413-32. PubMed ID: 18177365
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Genetic analysis of phenylacetic acid catabolism in Arthrobacter oxydans CECT386.
    Navarro-Llorens JM; Drzyzga O; Perera J
    Arch Microbiol; 2008 Jul; 190(1):89-100. PubMed ID: 18437357
    [TBL] [Abstract][Full Text] [Related]  

  • 59. A cytochrome P450 involved in the metabolism of abietane diterpenoids by Pseudomonas abietaniphila BKME-9.
    Smith DJ; Martin VJ; Mohn WW
    J Bacteriol; 2004 Jun; 186(11):3631-9. PubMed ID: 15150251
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Aerobic metabolism of phenylacetic acids in Azoarcus evansii.
    Mohamed Mel-S; Ismail W; Heider J; Fuchs G
    Arch Microbiol; 2002 Sep; 178(3):180-92. PubMed ID: 12189419
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.