BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

682 related articles for article (PubMed ID: 37629202)

  • 21. Dysregulation of synaptic proteins, dendritic spine abnormalities and pathological plasticity of synapses as experience-dependent mediators of cognitive and psychiatric symptoms in Huntington's disease.
    Nithianantharajah J; Hannan AJ
    Neuroscience; 2013 Oct; 251():66-74. PubMed ID: 22633949
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Cellular therapy and induced neuronal replacement for Huntington's disease.
    Benraiss A; Goldman SA
    Neurotherapeutics; 2011 Oct; 8(4):577-90. PubMed ID: 21971961
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Exploring the role of high-mobility group box 1 (HMGB1) protein in the pathogenesis of Huntington's disease.
    Angelopoulou E; Paudel YN; Piperi C
    J Mol Med (Berl); 2020 Mar; 98(3):325-334. PubMed ID: 32036391
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Huntington's disease: pathogenesis to animal models.
    Kumar P; Kalonia H; Kumar A
    Pharmacol Rep; 2010; 62(1):1-14. PubMed ID: 20360611
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Huntington's disease brain-derived small RNAs recapitulate associated neuropathology in mice.
    Creus-Muncunill J; Guisado-Corcoll A; Venturi V; Pantano L; Escaramís G; García de Herreros M; Solaguren-Beascoa M; Gámez-Valero A; Navarrete C; Masana M; Llorens F; Diaz-Lucena D; Pérez-Navarro E; Martí E
    Acta Neuropathol; 2021 Apr; 141(4):565-584. PubMed ID: 33547932
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Full length mutant huntingtin is required for altered Ca2+ signaling and apoptosis of striatal neurons in the YAC mouse model of Huntington's disease.
    Zhang H; Li Q; Graham RK; Slow E; Hayden MR; Bezprozvanny I
    Neurobiol Dis; 2008 Jul; 31(1):80-8. PubMed ID: 18502655
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Loss-of-Huntingtin in Medial and Lateral Ganglionic Lineages Differentially Disrupts Regional Interneuron and Projection Neuron Subtypes and Promotes Huntington's Disease-Associated Behavioral, Cellular, and Pathological Hallmarks.
    Mehler MF; Petronglo JR; Arteaga-Bracho EE; Gulinello ME; Winchester ML; Pichamoorthy N; Young SK; DeJesus CD; Ishtiaq H; Gokhan S; Molero AE
    J Neurosci; 2019 Mar; 39(10):1892-1909. PubMed ID: 30626701
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Huntington's Disease: Relationship Between Phenotype and Genotype.
    Sun YM; Zhang YB; Wu ZY
    Mol Neurobiol; 2017 Jan; 54(1):342-348. PubMed ID: 26742514
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Animal models of Huntington's disease: implications in uncovering pathogenic mechanisms and developing therapies.
    Wang LH; Qin ZH
    Acta Pharmacol Sin; 2006 Oct; 27(10):1287-302. PubMed ID: 17007735
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Genetic modifiers of Huntington's disease.
    Gusella JF; MacDonald ME; Lee JM
    Mov Disord; 2014 Sep; 29(11):1359-65. PubMed ID: 25154728
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Advances in Huntington's disease: implications for experimental therapeutics.
    Feigin A
    Curr Opin Neurol; 1998 Aug; 11(4):357-62. PubMed ID: 9725082
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Molecular mechanisms and potential therapeutical targets in Huntington's disease.
    Zuccato C; Valenza M; Cattaneo E
    Physiol Rev; 2010 Jul; 90(3):905-81. PubMed ID: 20664076
    [TBL] [Abstract][Full Text] [Related]  

  • 33. PRMT5- mediated symmetric arginine dimethylation is attenuated by mutant huntingtin and is impaired in Huntington's disease (HD).
    Ratovitski T; Arbez N; Stewart JC; Chighladze E; Ross CA
    Cell Cycle; 2015; 14(11):1716-29. PubMed ID: 25927346
    [TBL] [Abstract][Full Text] [Related]  

  • 34. In vivo cell-autonomous transcriptional abnormalities revealed in mice expressing mutant huntingtin in striatal but not cortical neurons.
    Thomas EA; Coppola G; Tang B; Kuhn A; Kim S; Geschwind DH; Brown TB; Luthi-Carter R; Ehrlich ME
    Hum Mol Genet; 2011 Mar; 20(6):1049-60. PubMed ID: 21177255
    [TBL] [Abstract][Full Text] [Related]  

  • 35. A soluble truncated tau species related to cognitive dysfunction and caspase-2 is elevated in the brain of Huntington's disease patients.
    Liu P; Smith BR; Huang ES; Mahesh A; Vonsattel JPG; Petersen AJ; Gomez-Pastor R; Ashe KH
    Acta Neuropathol Commun; 2019 Jul; 7(1):111. PubMed ID: 31358058
    [TBL] [Abstract][Full Text] [Related]  

  • 36. The dynamics of early-state transcriptional changes and aggregate formation in a Huntington's disease cell model.
    van Hagen M; Piebes DGE; de Leeuw WC; Vuist IM; van Roon-Mom WMC; Moerland PD; Verschure PJ
    BMC Genomics; 2017 May; 18(1):373. PubMed ID: 28499347
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Molecular mediators, environmental modulators and experience-dependent synaptic dysfunction in Huntington's disease.
    Hannan AJ
    Acta Biochim Pol; 2004; 51(2):415-30. PubMed ID: 15218539
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Mitochondrial structural and functional dynamics in Huntington's disease.
    Reddy PH; Mao P; Manczak M
    Brain Res Rev; 2009 Jun; 61(1):33-48. PubMed ID: 19394359
    [TBL] [Abstract][Full Text] [Related]  

  • 39. A disorder similar to Huntington's disease is associated with a novel CAG repeat expansion.
    Margolis RL; O'Hearn E; Rosenblatt A; Willour V; Holmes SE; Franz ML; Callahan C; Hwang HS; Troncoso JC; Ross CA
    Ann Neurol; 2001 Dec; 50(6):373-80. PubMed ID: 11761463
    [TBL] [Abstract][Full Text] [Related]  

  • 40.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 35.