These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

183 related articles for article (PubMed ID: 37629845)

  • 21. Nanoscale Electrical Degradation of Silicon-Carbon Composite Anode Materials for Lithium-Ion Batteries.
    Kim SH; Kim YS; Baek WJ; Heo S; Yun DJ; Han S; Jung H
    ACS Appl Mater Interfaces; 2018 Jul; 10(29):24549-24553. PubMed ID: 29944824
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Self-supporting V
    Diem AM; Hildenbrand K; Raafat L; Bill J; Burghard Z
    RSC Adv; 2021 Jan; 11(3):1354-1359. PubMed ID: 35424108
    [TBL] [Abstract][Full Text] [Related]  

  • 23. The Li-ion rechargeable battery: a perspective.
    Goodenough JB; Park KS
    J Am Chem Soc; 2013 Jan; 135(4):1167-76. PubMed ID: 23294028
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Sustainable Recycling Technology for Li-Ion Batteries and Beyond: Challenges and Future Prospects.
    Fan E; Li L; Wang Z; Lin J; Huang Y; Yao Y; Chen R; Wu F
    Chem Rev; 2020 Jul; 120(14):7020-7063. PubMed ID: 31990183
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Water-Based Electrode Manufacturing and Direct Recycling of Lithium-Ion Battery Electrodes-A Green and Sustainable Manufacturing System.
    Li J; Lu Y; Yang T; Ge D; Wood DL; Li Z
    iScience; 2020 May; 23(5):101081. PubMed ID: 32380421
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Current and future lithium-ion battery manufacturing.
    Liu Y; Zhang R; Wang J; Wang Y
    iScience; 2021 Apr; 24(4):102332. PubMed ID: 33889825
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Architectural Engineering Achieves High-Performance Alloying Anodes for Lithium and Sodium Ion Batteries.
    Guo S; Feng Y; Wang L; Jiang Y; Yu Y; Hu X
    Small; 2021 May; 17(19):e2005248. PubMed ID: 33734598
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Organosulfur Materials for Rechargeable Batteries: Structure, Mechanism, and Application.
    Sang P; Chen Q; Wang DY; Guo W; Fu Y
    Chem Rev; 2023 Feb; ():. PubMed ID: 36757873
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Anisotropic alignments of hierarchical Li
    Khalifa H; El-Safty SA; Reda A; Shenashen MA; Eid AI
    Natl Sci Rev; 2020 May; 7(5):863-880. PubMed ID: 34692109
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Recent Advances and Perspectives of Carbon-Based Nanostructures as Anode Materials for Li-ion Batteries.
    Roselin LS; Juang RS; Hsieh CT; Sagadevan S; Umar A; Selvin R; Hegazy HH
    Materials (Basel); 2019 Apr; 12(8):. PubMed ID: 30991665
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Sulfated Alginate as an Effective Polymer Binder for High-Voltage LiNi
    Oishi A; Tatara R; Togo E; Inoue H; Yasuno S; Komaba S
    ACS Appl Mater Interfaces; 2022 Nov; 14(46):51808-51818. PubMed ID: 36351777
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Lithium-ion battery recycling: a source of per- and polyfluoroalkyl substances (PFAS) to the environment?
    Rensmo A; Savvidou EK; Cousins IT; Hu X; Schellenberger S; Benskin JP
    Environ Sci Process Impacts; 2023 Jun; 25(6):1015-1030. PubMed ID: 37195252
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Solvent-Free Processed Cathode Slurry with Carbon Nanotube Conductors for Li-Ion Batteries.
    Park G; Kim HS; Lee KJ
    Nanomaterials (Basel); 2023 Jan; 13(2):. PubMed ID: 36678076
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Direct Observation of Carboxymethyl Cellulose and Styrene-Butadiene Rubber Binder Distribution in Practical Graphite Anodes for Li-Ion Batteries.
    Chang WJ; Lee GH; Cheon YJ; Kim JT; Lee SI; Kim J; Kim M; Park WI; Lee YJ
    ACS Appl Mater Interfaces; 2019 Nov; 11(44):41330-41337. PubMed ID: 31613086
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Separation of cathode particles and aluminum current foil in lithium-ion battery by high-voltage pulsed discharge Part II: Prospective life cycle assessment based on experimental data.
    Kikuchi Y; Suwa I; Heiho A; Dou Y; Lim S; Namihira T; Mochidzuki K; Koita T; Tokoro C
    Waste Manag; 2021 Aug; 132():86-95. PubMed ID: 34325331
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Novel polymer Li-ion binder carboxymethyl cellulose derivative enhanced electrochemical performance for Li-ion batteries.
    Qiu L; Shao Z; Wang D; Wang F; Wang W; Wang J
    Carbohydr Polym; 2014 Nov; 112():532-8. PubMed ID: 25129778
    [TBL] [Abstract][Full Text] [Related]  

  • 37. High Performance and Long-cycle Life Rechargeable Aluminum Ion Battery: Recent Progress, Perspectives and Challenges.
    Abu Nayem SM; Ahmad A; Shaheen Shah S; Saeed Alzahrani A; Saleh Ahammad AJ; Aziz MA
    Chem Rec; 2022 Dec; 22(12):e202200181. PubMed ID: 36094785
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Exploring Chemical, Mechanical, and Electrical Functionalities of Binders for Advanced Energy-Storage Devices.
    Chen H; Ling M; Hencz L; Ling HY; Li G; Lin Z; Liu G; Zhang S
    Chem Rev; 2018 Sep; 118(18):8936-8982. PubMed ID: 30133259
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Challenges and prospects of lithium-sulfur batteries.
    Manthiram A; Fu Y; Su YS
    Acc Chem Res; 2013 May; 46(5):1125-34. PubMed ID: 23095063
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Advanced Matrixes for Binder-Free Nanostructured Electrodes in Lithium-Ion Batteries.
    Zhang L; Qin X; Zhao S; Wang A; Luo J; Wang ZL; Kang F; Lin Z; Li B
    Adv Mater; 2020 Jun; 32(24):e1908445. PubMed ID: 32310315
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.