BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

171 related articles for article (PubMed ID: 37629924)

  • 1. Optimal Design of the Austenitic Stainless-Steel Composition Based on Machine Learning and Genetic Algorithm.
    Liu C; Wang X; Cai W; Yang J; Su H
    Materials (Basel); 2023 Aug; 16(16):. PubMed ID: 37629924
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A Machine Learning Approach for Modelling Cold-Rolling Curves for Various Stainless Steels.
    Contreras-Fortes J; Rodríguez-García MI; Sales DL; Sánchez-Miranda R; Almagro JF; Turias I
    Materials (Basel); 2023 Dec; 17(1):. PubMed ID: 38204001
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A machine learning aided interpretable model for rupture strength prediction in Fe-based martensitic and austenitic alloys.
    Mamun O; Wenzlick M; Hawk J; Devanathan R
    Sci Rep; 2021 Mar; 11(1):5466. PubMed ID: 33750812
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Microstructure and Properties of Porous High-N Ni-Free Austenitic Stainless Steel Fabricated by Powder Metallurgical Route.
    Hu L; Ngai T; Peng H; Li L; Zhou F; Peng Z
    Materials (Basel); 2018 Jun; 11(7):. PubMed ID: 29932106
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Microstructure, Mechanical, and Corrosion Properties of Ni-Free Austenitic Stainless Steel Prepared by Mechanical Alloying and HIPping.
    Romanczuk E; Perkowski K; Oksiuta Z
    Materials (Basel); 2019 Oct; 12(20):. PubMed ID: 31635345
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Prediction of the Fatigue Strength of Steel Based on Interpretable Machine Learning.
    Liu C; Wang X; Cai W; Yang J; Su H
    Materials (Basel); 2023 Nov; 16(23):. PubMed ID: 38068098
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effect of Copper Addition on the Formability of 304L Austenitic Stainless Steel.
    Huang A; Wang K; Zhao Y; Wang W; Wei X; Peng J
    J Mater Eng Perform; 2023; 32(8):3563-3570. PubMed ID: 36157845
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Experimental Study of the Post-Fire Mechanical and Material Response of Cold-Worked Austenitic Stainless Steel Reinforcing Bar.
    Rehman FU; Cashell KA; Anguilano L
    Materials (Basel); 2022 Feb; 15(4):. PubMed ID: 35208103
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Comparative life cycle cost assessment of (lean) duplex stainless steel in wastewater treatment environments.
    Nagels M; Verhoeven B; Larché N; Dewil R; Rossi B
    J Environ Manage; 2022 Mar; 306():114375. PubMed ID: 35051819
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Mechanical Properties, Short Time Creep, and Fatigue of an Austenitic Steel.
    Brnic J; Turkalj G; Canadija M; Lanc D; Krscanski S; Brcic M; Li Q; Niu J
    Materials (Basel); 2016 Apr; 9(4):. PubMed ID: 28773424
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A review on nickel-free nitrogen containing austenitic stainless steels for biomedical applications.
    Talha M; Behera CK; Sinha OP
    Mater Sci Eng C Mater Biol Appl; 2013 Oct; 33(7):3563-75. PubMed ID: 23910251
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Compressive Behavior and Constitutive Model of Austenitic Stainless Steel S30403 in High Strain Range.
    Peng Y; Chu J; Dong J
    Materials (Basel); 2018 Jun; 11(6):. PubMed ID: 29914083
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Modeling and Composition Design of Low-Alloy Steel's Mechanical Properties Based on Neural Networks and Genetic Algorithms.
    Zhu Z; Liang Y; Zou J
    Materials (Basel); 2020 Nov; 13(23):. PubMed ID: 33255378
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Comparative Research of Microstructure and Mechanical Properties of Stainless and Structural Steel Dissimilar Welds.
    Baskutis S; Baskutiene J; Bendikiene R; Ciuplys A; Dutkus K
    Materials (Basel); 2021 Oct; 14(20):. PubMed ID: 34683769
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Data-driven prediction on critical mechanical properties of engineered cementitious composites based on machine learning.
    Qing S; Li C
    Sci Rep; 2024 Jul; 14(1):15322. PubMed ID: 38961183
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Study of biocompatibility of medical grade high nitrogen nickel-free austenitic stainless steel in vitro.
    Li M; Yin T; Wang Y; Du F; Zou X; Gregersen H; Wang G
    Mater Sci Eng C Mater Biol Appl; 2014 Oct; 43():641-8. PubMed ID: 25175259
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Tensile Properties of 21-6-9 Austenitic Stainless Steel Built Using Laser Powder-Bed Fusion.
    Neikter M; Edin E; Proper S; Bhaskar P; Nekkalapudi GK; Linde O; Hansson T; Pederson R
    Materials (Basel); 2021 Jul; 14(15):. PubMed ID: 34361474
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Superior Strength and Ductility of 304 Austenitic Stainless Steel with Gradient Dislocations.
    Pan Q; Guo S; Cui F; Jing L; Lu L
    Nanomaterials (Basel); 2021 Oct; 11(10):. PubMed ID: 34685054
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Wastewater treatment process enhancement based on multi-objective optimization and interpretable machine learning.
    Liu T; Zhang H; Wu J; Liu W; Fang Y
    J Environ Manage; 2024 Jul; 364():121430. PubMed ID: 38875983
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The influence of ultrafine-grained structure on the mechanical properties and biocompatibility of austenitic stainless steels.
    Rybalchenko OV; Anisimova NY; Kiselevsky MV; Belyakov AN; Tokar AA; Terent'ev VF; Prosvirnin DV; Rybalchenko GV; Raab GI; Dobatkin SV
    J Biomed Mater Res B Appl Biomater; 2020 May; 108(4):1460-1468. PubMed ID: 31617961
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.