These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

124 related articles for article (PubMed ID: 37629998)

  • 21. Tough and fatigue-resistant polymer networks by crack tip softening.
    Liu B; Yin T; Zhu J; Zhao D; Yu H; Qu S; Yang W
    Proc Natl Acad Sci U S A; 2023 Feb; 120(6):e2217781120. PubMed ID: 36716369
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Threshold intensity factors as lower boundaries for crack propagation in ceramics.
    Marx R; Jungwirth F; Walter PO
    Biomed Eng Online; 2004 Nov; 3(1):41. PubMed ID: 15548323
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Effect of Rod-like Structure on Fatigue Life, Short Surface Crack Initiation and Growth Characteristics of Extruded Aluminum Alloy A2024 (Analysis via Modified Linear Elastic Fracture Mechanics).
    Masuda K; Ishihara S; Shibata H; Oguma N
    Materials (Basel); 2021 Dec; 14(24):. PubMed ID: 34947131
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Aspects of in vitro fatigue in human cortical bone: time and cycle dependent crack growth.
    Nalla RK; Kruzic JJ; Kinney JH; Ritchie RO
    Biomaterials; 2005 May; 26(14):2183-95. PubMed ID: 15576194
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Effect of the Crack Tip Bifurcation on the Plasticity-Induced Fatigue Propagation in Metallic Materials.
    Toribio J; González B; Matos JC
    Materials (Basel); 2021 Jun; 14(12):. PubMed ID: 34207304
    [TBL] [Abstract][Full Text] [Related]  

  • 26. [Numerical simulation study of fracture mechanics of the atherosclerotic plaque].
    He J; Zhong W
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2021 Dec; 38(6):1097-1102. PubMed ID: 34970892
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Short cracks in knee meniscus tissue cause strain concentrations, but do not reduce ultimate stress, in single-cycle uniaxial tension.
    Peloquin JM; Santare MH; Elliott DM
    R Soc Open Sci; 2018 Nov; 5(11):181166. PubMed ID: 30564409
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Effect of Electropulsing Treatment on the Fatigue Crack Growth Behavior of Copper.
    Yin Y; Chen H; Morita Y; Toku Y; Ju Y
    Materials (Basel); 2018 Nov; 11(11):. PubMed ID: 30400171
    [TBL] [Abstract][Full Text] [Related]  

  • 29. A Fatigue Life Prediction Method Based on Strain Intensity Factor.
    Zhang W; Liu H; Wang Q; He J
    Materials (Basel); 2017 Jun; 10(7):. PubMed ID: 28773049
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Numerical Analysis of Fatigue Crack Growth Path and Life Predictions for Linear Elastic Material.
    Alshoaibi AM; Fageehi YA
    Materials (Basel); 2020 Jul; 13(15):. PubMed ID: 32751568
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Fracture toughness and fatigue crack propagation rate of short fiber reinforced epoxy composites for analogue cortical bone.
    Chong AC; Miller F; Buxton M; Friis EA
    J Biomech Eng; 2007 Aug; 129(4):487-93. PubMed ID: 17655469
    [TBL] [Abstract][Full Text] [Related]  

  • 32. A novel ultrasonic non-destructive testing methodology to monitor fatigue crack growth in compact tension specimens.
    Abraham ST; Babu MN; Venkatraman B
    Rev Sci Instrum; 2023 Mar; 94(3):035108. PubMed ID: 37012745
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Crack tip shielding observed with high-resolution transmission electron microscopy.
    Adhika DR; Tanaka M; Daio T; Higashida K
    Microscopy (Oxf); 2015 Oct; 64(5):335-40. PubMed ID: 26115957
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Crack Monitoring in Resonance Fatigue Testing of Welded Specimens Using Digital Image Correlation.
    Friedrich N; Ehlers S
    J Vis Exp; 2019 Sep; (151):. PubMed ID: 31609311
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Influence of environment on the fatigue crack growth behaviour of 12% Cr steel.
    Schönbauer BM; Stanzl-Tschegg SE
    Ultrasonics; 2013 Dec; 53(8):1399-405. PubMed ID: 23490013
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Fatigue Crack Growth Behavior of CP-Ti Cruciform Specimens with Mixed Mode I-II Crack under Biaxial Loading.
    Liu JY; Bao WJ; Zhao JY; Zhou CY
    Materials (Basel); 2022 Mar; 15(5):. PubMed ID: 35269157
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Fracture mechanics by three-dimensional crack-tip synchrotron X-ray microscopy.
    Withers PJ
    Philos Trans A Math Phys Eng Sci; 2015 Mar; 373(2036):. PubMed ID: 25624521
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Determination of the Enhancement or Shielding Interaction between Two Parallel Cracks under Fatigue Loading.
    Han Z; Qian C; Tang L; Li H
    Materials (Basel); 2019 Apr; 12(8):. PubMed ID: 31022883
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Fatigue crack propagation behavior of ultra high molecular weight polyethylene under mixed mode conditions.
    Elbert KE; Wright TM; Rimnac CM; Klein RW; Ingraffea AR; Gunsallus K; Bartel DL
    J Biomed Mater Res; 1994 Feb; 28(2):181-7. PubMed ID: 8207029
    [TBL] [Abstract][Full Text] [Related]  

  • 40. The Numerical Analysis of the In-Plane Constraint Influence on the Behavior of the Crack Subjected to Cyclic Loading.
    Galkiewicz J; Janus-Galkiewicz U
    Materials (Basel); 2021 Apr; 14(7):. PubMed ID: 33918434
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.