These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
175 related articles for article (PubMed ID: 37630000)
1. Effect of Tempering Temperature on Hydrogen Embrittlement of SCM440 Tempered Martensitic Steel. Kim SG; Kim JY; Hwang B Materials (Basel); 2023 Aug; 16(16):. PubMed ID: 37630000 [TBL] [Abstract][Full Text] [Related]
2. Mechanical Behaviors of Microalloyed TRIP-Assisted Annealed Martensitic Steels under Hydrogen Charging. Yang X; Yu H; Song C; Li L Materials (Basel); 2021 Dec; 14(24):. PubMed ID: 34947354 [TBL] [Abstract][Full Text] [Related]
3. Comparative study on the effects of Cr, V, and Mo carbides for hydrogen-embrittlement resistance of tempered martensitic steel. Lee J; Lee T; Mun DJ; Bae CM; Lee CS Sci Rep; 2019 Mar; 9(1):5219. PubMed ID: 30914723 [TBL] [Abstract][Full Text] [Related]
4. Hydrogen embrittlement property of a 1700-MPa-class ultrahigh-strength tempered martensitic steel. Li S; Akiyama E; Yuuji K; Tsuzaki K; Uno N; Zhang B Sci Technol Adv Mater; 2010 Apr; 11(2):025005. PubMed ID: 27877333 [TBL] [Abstract][Full Text] [Related]
5. The effect of tempering temperature on microstructure and corrosion resistance of M390 powder metallurgical martensitic stainless steel. Yin J; Gu J; Lin P; Chi H; Ma D; Li X; Liao J; Zhou J Heliyon; 2024 Aug; 10(16):e36521. PubMed ID: 39258200 [TBL] [Abstract][Full Text] [Related]
6. Effect of undissolved Nb carbides on mechanical properties of hydrogen-precharged tempered martensitic steel. Seo HJ; Jo JW; Kim JN; Kwon K; Lee J; Choi S; Lee T; Lee CS Sci Rep; 2020 Jul; 10(1):11704. PubMed ID: 32678163 [TBL] [Abstract][Full Text] [Related]
7. Change in Hydrogen Trapping Characteristics and Influence on Hydrogen Embrittlement Sensitivity in a Medium-Carbon, High-Strength Steel: The Effects of Heat Treatments. Tong Z; Wang H; Zheng W; Zhou H Materials (Basel); 2024 Apr; 17(8):. PubMed ID: 38673211 [TBL] [Abstract][Full Text] [Related]
8. Dilatometric and Microstructural Study of Martensite Tempering in 4% Mn Steel. Grajcar A; Morawiec M; Jimenez JA; Garcia-Mateo C Materials (Basel); 2020 Oct; 13(19):. PubMed ID: 33036358 [TBL] [Abstract][Full Text] [Related]
9. Effects of Hot Stamping and Tempering on Hydrogen Embrittlement of a Low-Carbon Boron-Alloyed Steel. Zhang Y; Hui W; Zhao X; Wang C; Dong H Materials (Basel); 2018 Dec; 11(12):. PubMed ID: 30544704 [TBL] [Abstract][Full Text] [Related]
10. The effect of carbide precipitate morphology on fracture toughness in low-tempered steels containing Ni. Krawczyk J; Bała P; Pacyna J J Microsc; 2010 Mar; 237(3):411-5. PubMed ID: 20500408 [TBL] [Abstract][Full Text] [Related]
11. Effect of Tempering Temperature on Microstructure and Sulfide Stress Cracking of 125 Ksi Grade Casing Steel. Luo M; Zhou GY; Shen H; Wang XT; Li MC; Zhang ZH; Cao GH Materials (Basel); 2022 Apr; 15(7):. PubMed ID: 35407921 [TBL] [Abstract][Full Text] [Related]
12. Effects of Silicon Content and Tempering Temperature on the Microstructural Evolution and Mechanical Properties of HT-9 Steels. Liu J; Liu W; Hao Z; Shi T; Kang L; Cui Z; Yun D Materials (Basel); 2020 Feb; 13(4):. PubMed ID: 32098140 [TBL] [Abstract][Full Text] [Related]
13. Effects of the Addition of Nb and V on the Microstructural Evolution and Hydrogen Embrittlement Resistance of High Strength Martensitic Steels. Liu B; Liao X; Tang Y; Si Y; Feng Y; Cao P; Dai Q; Li K Scanning; 2022; 2022():4040800. PubMed ID: 35282565 [TBL] [Abstract][Full Text] [Related]
14. Comparison of Hydrogen Embrittlement Susceptibility of Different Types of Advanced High-Strength Steels. Cho S; Kim GI; Ko SJ; Yoo JS; Jung YS; Yoo YH; Kim JG Materials (Basel); 2022 May; 15(9):. PubMed ID: 35591740 [TBL] [Abstract][Full Text] [Related]
15. Microstructure Transformation on Pre-Quenched and Ultrafast-Tempered High-Strength Multiphase Steels. Zhao Y; Xiang Z; Tan Y; Ji X; Zhang L; Zhang F; Xiang S Materials (Basel); 2019 Jan; 12(3):. PubMed ID: 30691233 [TBL] [Abstract][Full Text] [Related]
16. Comparative Study of the Tempering Behavior of Different Martensitic Steels by Means of In-Situ Diffractometry and Dilatometry. Hunkel M; Dong J; Epp J; Kaiser D; Dietrich S; Schulze V; Rajaei A; Hallstedt B; Broeckmann C Materials (Basel); 2020 Nov; 13(22):. PubMed ID: 33182632 [TBL] [Abstract][Full Text] [Related]
17. Achieving 1.7 GPa Considerable Ductility High-Strength Low-Alloy Steel Using Hot-Rolling and Tempering Processes. Geng H; Sun X; Guo X; Zhao Y; Yin X; Du Z Materials (Basel); 2024 Sep; 17(18):. PubMed ID: 39336236 [TBL] [Abstract][Full Text] [Related]
18. Effect of 1.5 wt% Copper Addition and Various Contents of Silicon on Mechanical Properties of 1.7102 Medium Carbon Steel. Salvetr P; Gokhman A; Nový Z; Motyčka P; Kotous J Materials (Basel); 2021 Sep; 14(18):. PubMed ID: 34576468 [TBL] [Abstract][Full Text] [Related]
19. Regulation Law of Tempering Cooling Rate on Toughness of Medium-Carbon Medium-Alloy Steel. Yang C; Xu T; Zhao H; Hu C; Dong H Materials (Basel); 2023 Dec; 17(1):. PubMed ID: 38204058 [TBL] [Abstract][Full Text] [Related]
20. Thermomechanical Processing for Improved Mechanical Properties of HT9 Steels. Byun TS; Collins DA; Lach TG; Choi JP; Maloy SA Materials (Basel); 2024 Aug; 17(15):. PubMed ID: 39124467 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]