These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

122 related articles for article (PubMed ID: 37630083)

  • 1. Review of the Flight Control Method of a Bird-like Flapping-Wing Air Vehicle.
    Fang X; Wen Y; Gao Z; Gao K; Luo Q; Peng H; Du R
    Micromachines (Basel); 2023 Jul; 14(8):. PubMed ID: 37630083
    [TBL] [Abstract][Full Text] [Related]  

  • 2. An at-scale tailless flapping wing hummingbird robot: II. Flight control in hovering and trajectory tracking.
    Fei F; Tu Z; Deng X
    Bioinspir Biomim; 2023 Jan; 18(2):. PubMed ID: 36595240
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Review of insect-inspired wing micro air vehicle.
    Song F; Yan Y; Sun J
    Arthropod Struct Dev; 2023 Jan; 72():101225. PubMed ID: 36464577
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Aerodynamics of a bio-inspired flexible flapping-wing micro air vehicle.
    Nakata T; Liu H; Tanaka Y; Nishihashi N; Wang X; Sato A
    Bioinspir Biomim; 2011 Dec; 6(4):045002. PubMed ID: 22126793
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Biomechanics and biomimetics in insect-inspired flight systems.
    Liu H; Ravi S; Kolomenskiy D; Tanaka H
    Philos Trans R Soc Lond B Biol Sci; 2016 Sep; 371(1704):. PubMed ID: 27528780
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Special section on biomimetics of movement.
    Carpi F; Erb R; Jeronimidis G
    Bioinspir Biomim; 2011 Dec; 6(4):040201. PubMed ID: 22128305
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Development and flight performance of a biologically-inspired tailless flapping-wing micro air vehicle with wing stroke plane modulation.
    Nguyen QV; Chan WL
    Bioinspir Biomim; 2018 Dec; 14(1):016015. PubMed ID: 30523879
    [TBL] [Abstract][Full Text] [Related]  

  • 8. How oscillating aerodynamic forces explain the timbre of the hummingbird's hum and other animals in flapping flight.
    Hightower BJ; Wijnings PW; Scholte R; Ingersoll R; Chin DD; Nguyen J; Shorr D; Lentink D
    Elife; 2021 Mar; 10():. PubMed ID: 33724182
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Design optimization and experimental study of a novel mechanism for a hover-able bionic flapping-wing micro air vehicle.
    Deng H; Xiao S; Huang B; Yang L; Xiang X; Ding X
    Bioinspir Biomim; 2020 Dec; 16(2):. PubMed ID: 33075759
    [No Abstract]   [Full Text] [Related]  

  • 10. Aerodynamic analysis of hummingbird-like hovering flight.
    Haider N; Shahzad A; Qadri MNM; Shams TA
    Bioinspir Biomim; 2021 Oct; 16(6):. PubMed ID: 34547732
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Development of flapping wing robot and vision-based obstacle avoidance strategy.
    Park H; Bae G; Kim I; Kim S; Oh H
    PeerJ Comput Sci; 2023; 9():e1201. PubMed ID: 37346630
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Modeling and Analysis of a Simple Flexible Wing-Thorax System in Flapping-Wing Insects.
    Cote B; Weston S; Jankauski M
    Biomimetics (Basel); 2022 Nov; 7(4):. PubMed ID: 36412735
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Wing Kinematics-Based Flight Control Strategy in Insect-Inspired Flight Systems: Deep Reinforcement Learning Gives Solutions and Inspires Controller Design in Flapping MAVs.
    Xue Y; Cai X; Xu R; Liu H
    Biomimetics (Basel); 2023 Jul; 8(3):. PubMed ID: 37504183
    [TBL] [Abstract][Full Text] [Related]  

  • 14. First lift-off and flight performance of a tailless flapping-wing aerial robot in high-altitude environments.
    Tsuchiya S; Aono H; Asai K; Nonomura T; Ozawa Y; Anyoji M; Ando N; Kang CK; Pohly J
    Sci Rep; 2023 Jun; 13(1):8995. PubMed ID: 37268720
    [TBL] [Abstract][Full Text] [Related]  

  • 15. State-space aerodynamic model reveals high force control authority and predictability in flapping flight.
    Bayiz YE; Cheng B
    J R Soc Interface; 2021 Aug; 18(181):20210222. PubMed ID: 34343451
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Aerodynamics, sensing and control of insect-scale flapping-wing flight.
    Shyy W; Kang CK; Chirarattananon P; Ravi S; Liu H
    Proc Math Phys Eng Sci; 2016 Feb; 472(2186):20150712. PubMed ID: 27118897
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Structural dynamics and aerodynamics measurements of biologically inspired flexible flapping wings.
    Wu P; Stanford BK; Sällström E; Ukeiley L; Ifju PG
    Bioinspir Biomim; 2011 Mar; 6(1):016009. PubMed ID: 21339627
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Stable hovering of a jellyfish-like flying machine.
    Ristroph L; Childress S
    J R Soc Interface; 2014 Mar; 11(92):20130992. PubMed ID: 24430122
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Insect-like flapping wing mechanism based on a double spherical Scotch yoke.
    Galiński C; Zbikowski R
    J R Soc Interface; 2005 Jun; 2(3):223-35. PubMed ID: 16849181
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Closed-loop nonlinear optimal control design for flapping-wing flying robot (1.6 m wingspan) in indoor confined space: Prototyping, modeling, simulation, and experiment.
    Nekoo SR; Ollero A
    ISA Trans; 2023 Nov; 142():635-652. PubMed ID: 37574420
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.