These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

159 related articles for article (PubMed ID: 37630112)

  • 21. A polydimethylsiloxane-polycarbonate hybrid microfluidic device capable of generating perpendicular chemical and oxygen gradients for cell culture studies.
    Chang CW; Cheng YJ; Tu M; Chen YH; Peng CC; Liao WH; Tung YC
    Lab Chip; 2014 Oct; 14(19):3762-72. PubMed ID: 25096368
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Genetic dissection of memory for associative and non-associative learning in Caenorhabditis elegans.
    Lau HL; Timbers TA; Mahmoud R; Rankin CH
    Genes Brain Behav; 2013 Mar; 12(2):210-23. PubMed ID: 23013276
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Parallel encoding of sensory history and behavioral preference during Caenorhabditis elegans olfactory learning.
    Cho CE; Brueggemann C; L'Etoile ND; Bargmann CI
    Elife; 2016 Jul; 5():. PubMed ID: 27383131
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Mutations in the guanylate cyclase gcy-28 neuronally dissociate naïve attraction and memory retrieval.
    Li N; van der Kooy D
    Eur J Neurosci; 2018 Dec; 48(11):3367-3378. PubMed ID: 30362188
    [TBL] [Abstract][Full Text] [Related]  

  • 25. The role of neuropeptides in learning: Insights from C. elegans.
    De Fruyt N; Yu AJ; Rankin CH; Beets I; Chew YL
    Int J Biochem Cell Biol; 2020 Aug; 125():105801. PubMed ID: 32652305
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Antagonistic Serotonergic and Octopaminergic Neural Circuits Mediate Food-Dependent Locomotory Behavior in
    Churgin MA; McCloskey RJ; Peters E; Fang-Yen C
    J Neurosci; 2017 Aug; 37(33):7811-7823. PubMed ID: 28698386
    [TBL] [Abstract][Full Text] [Related]  

  • 27. A Shearless Microfluidic Device Detects a Role in Mechanosensitivity for AWC
    Caprini D; Schwartz S; Lanza E; Milanetti E; Lucente V; Ferrarese G; Chiodo L; Nicoletti M; Folli V
    Adv Biol (Weinh); 2021 Sep; 5(9):e2100927. PubMed ID: 34423577
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Multimodal Stimulation in a Microfluidic Device Facilitates Studies of Interneurons in Sensory Integration in C. elegans.
    Cho Y; Lee SA; Chew YL; Broderick K; Schafer WR; Lu H
    Small; 2020 Mar; 16(10):e1905852. PubMed ID: 32003130
    [TBL] [Abstract][Full Text] [Related]  

  • 29. An elegant mind: learning and memory in Caenorhabditis elegans.
    Ardiel EL; Rankin CH
    Learn Mem; 2010 Apr; 17(4):191-201. PubMed ID: 20335372
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Aversive Associative Learning and Memory Formation by Pairing Two Chemicals in Caenorhabditis elegans.
    Shibutani M; Vibulyaseck S; Maruyama IN
    J Vis Exp; 2022 Jun; (184):. PubMed ID: 35816003
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Neurophysiological basis of stress-induced aversive memory in the nematode Caenorhabditis elegans.
    Liao CP; Chiang YC; Tam WH; Chen YJ; Chou SH; Pan CL
    Curr Biol; 2022 Dec; 32(24):5309-5322.e6. PubMed ID: 36455561
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Neuron-specific regulation of associative learning and memory by MAGI-1 in C. elegans.
    Stetak A; Hörndli F; Maricq AV; van den Heuvel S; Hajnal A
    PLoS One; 2009 Jun; 4(6):e6019. PubMed ID: 19551147
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Detecting and Trapping of a Single C. elegans Worm in a Microfluidic Chip for Automated Microplate Dispensing.
    Desta IT; Al-Sharif A; AlGharibeh N; Mustafa N; Orozaliev A; Giakoumidis N; Gunsalus KC; Song YA
    SLAS Technol; 2017 Aug; 22(4):431-436. PubMed ID: 27630097
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Comparing Caenorhabditis elegans gentle and harsh touch response behavior using a multiplexed hydraulic microfluidic device.
    McClanahan PD; Xu JH; Fang-Yen C
    Integr Biol (Camb); 2017 Oct; 9(10):800-809. PubMed ID: 28914311
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Enhanced Caenorhabditis elegans locomotion in a structured microfluidic environment.
    Park S; Hwang H; Nam SW; Martinez F; Austin RH; Ryu WS
    PLoS One; 2008 Jun; 3(6):e2550. PubMed ID: 18575618
    [TBL] [Abstract][Full Text] [Related]  

  • 36. A conserved function of C. elegans CASY-1 calsyntenin in associative learning.
    Hoerndli FJ; Walser M; Fröhli Hoier E; de Quervain D; Papassotiropoulos A; Hajnal A
    PLoS One; 2009; 4(3):e4880. PubMed ID: 19287492
    [TBL] [Abstract][Full Text] [Related]  

  • 37. A mutation in the AMPA-type glutamate receptor, glr-1, blocks olfactory associative and nonassociative learning in Caenorhabditis elegans.
    Morrison GE; van der Kooy D
    Behav Neurosci; 2001 Jun; 115(3):640-9. PubMed ID: 11439453
    [TBL] [Abstract][Full Text] [Related]  

  • 38. The molecular and neural regulation of ultraviolet light phototaxis and its food-associated learning behavioral plasticity in C. elegans.
    Ozawa K; Shinkai Y; Kako K; Fukamizu A; Doi M
    Neurosci Lett; 2022 Jan; 770():136384. PubMed ID: 34890717
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Microfluidic chamber arrays for whole-organism behavior-based chemical screening.
    Chung K; Zhan M; Srinivasan J; Sternberg PW; Gong E; Schroeder FC; Lu H
    Lab Chip; 2011 Nov; 11(21):3689-3697. PubMed ID: 21935539
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Maze exploration and learning in C. elegans.
    Qin J; Wheeler AR
    Lab Chip; 2007 Feb; 7(2):186-92. PubMed ID: 17268620
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.