These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

169 related articles for article (PubMed ID: 37630125)

  • 1. Biocompatible High-Resolution 3D-Printed Microfluidic Devices: Integrated Cell Chemotaxis Demonstration.
    Boaks M; Roper C; Viglione M; Hooper K; Woolley AT; Christensen KA; Nordin GP
    Micromachines (Basel); 2023 Aug; 14(8):. PubMed ID: 37630125
    [TBL] [Abstract][Full Text] [Related]  

  • 2. High density 3D printed microfluidic valves, pumps, and multiplexers.
    Gong H; Woolley AT; Nordin GP
    Lab Chip; 2016 Jul; 16(13):2450-8. PubMed ID: 27242064
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Multi-Resin Masked Stereolithography (MSLA) 3D Printing for Rapid and Inexpensive Prototyping of Microfluidic Chips with Integrated Functional Components.
    Ahmed I; Sullivan K; Priye A
    Biosensors (Basel); 2022 Aug; 12(8):. PubMed ID: 36005047
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Custom 3D printer and resin for 18 μm × 20 μm microfluidic flow channels.
    Gong H; Bickham BP; Woolley AT; Nordin GP
    Lab Chip; 2017 Aug; 17(17):2899-2909. PubMed ID: 28726927
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Integrated biocompatible 3D printed isoporous membranes with 7 μm pores.
    Viglione MS; Saxton A; Downs D; Woolley AT; Christensen KA; Van Ry PM; Nordin GP
    Lab Chip; 2024 Apr; 24(8):2202-2207. PubMed ID: 38525691
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Fully 3D printed fluidic devices with integrated valves and pumps for flow injection analysis.
    Castiaux AD; Selemani MA; Ward MA; Martin RS
    Anal Methods; 2021 Nov; 13(42):5017-5024. PubMed ID: 34643627
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Biocompatible PEGDA Resin for 3D Printing.
    Warr C; Valdoz JC; Bickham BP; Knight CJ; Franks NA; Chartrand N; Van Ry PM; Christensen KA; Nordin GP; Cook AD
    ACS Appl Bio Mater; 2020 Apr; 3(4):2239-2244. PubMed ID: 32467881
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Projection Micro-Stereolithography to Manufacture a Biocompatible Micro-Optofluidic Device for Cell Concentration Monitoring.
    Saitta L; Cutuli E; Celano G; Tosto C; Sanalitro D; Guarino F; Cicala G; Bucolo M
    Polymers (Basel); 2023 Nov; 15(22):. PubMed ID: 38006185
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Applied tutorial for the design and fabrication of biomicrofluidic devices by resin 3D printing.
    Musgrove HB; Catterton MA; Pompano RR
    Anal Chim Acta; 2022 May; 1209():339842. PubMed ID: 35569850
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Accurate and rapid 3D printing of microfluidic devices using wavelength selection on a DLP printer.
    van der Linden PJEM; Popov AM; Pontoni D
    Lab Chip; 2020 Nov; 20(22):4128-4140. PubMed ID: 33057528
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Integration of a microfluidic system into a conventional luminescence detector using a 3D printed alignment device.
    Écija-Arenas Á; Román-Pizarro V; Fernández-Romero JM
    Mikrochim Acta; 2020 Oct; 187(11):620. PubMed ID: 33084998
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Investigation and comparison of resin materials in transparent DLP-printing for application in cell culture and organs-on-a-chip.
    Fritschen A; Bell AK; Königstein I; Stühn L; Stark RW; Blaeser A
    Biomater Sci; 2022 Apr; 10(8):1981-1994. PubMed ID: 35262097
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Spatially and optically tailored 3D printing for highly miniaturized and integrated microfluidics.
    Sanchez Noriega JL; Chartrand NA; Valdoz JC; Cribbs CG; Jacobs DA; Poulson D; Viglione MS; Woolley AT; Van Ry PM; Christensen KA; Nordin GP
    Nat Commun; 2021 Sep; 12(1):5509. PubMed ID: 34535656
    [TBL] [Abstract][Full Text] [Related]  

  • 14. 3D-Printed Microfluidic One-Way Valves and Pumps.
    Hinnen H; Viglione M; Munro TR; Woolley AT; Nordin GP
    Micromachines (Basel); 2023 Jun; 14(7):. PubMed ID: 37512597
    [TBL] [Abstract][Full Text] [Related]  

  • 15. 3D Printed Microfluidics.
    Nielsen AV; Beauchamp MJ; Nordin GP; Woolley AT
    Annu Rev Anal Chem (Palo Alto Calif); 2020 Jun; 13(1):45-65. PubMed ID: 31821017
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Design and characterization of a 3D-printed staggered herringbone mixer.
    Shenoy VJ; Edwards CE; Helgeson ME; Valentine MT
    Biotechniques; 2021 May; 70(5):285-289. PubMed ID: 34000813
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Adhesive bonding strategies to fabricate high-strength and transparent 3D printed microfluidic device.
    Kecili S; Tekin HC
    Biomicrofluidics; 2020 Mar; 14(2):024113. PubMed ID: 32341724
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Sealing 3D-printed parts to poly(dimethylsiloxane) for simple fabrication of Microfluidic devices.
    Carrell CS; McCord CP; Wydallis RM; Henry CS
    Anal Chim Acta; 2020 Aug; 1124():78-84. PubMed ID: 32534678
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Facile Route for 3D Printing of Transparent PETg-Based Hybrid Biomicrofluidic Devices Promoting Cell Adhesion.
    Mehta V; Vilikkathala Sudhakaran S; Rath SN
    ACS Biomater Sci Eng; 2021 Aug; 7(8):3947-3963. PubMed ID: 34282888
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Negligible-cost microfluidic device fabrication using 3D-printed interconnecting channel scaffolds.
    Felton H; Hughes R; Diaz-Gaxiola A
    PLoS One; 2021; 16(2):e0245206. PubMed ID: 33534849
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.