These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

125 related articles for article (PubMed ID: 37630153)

  • 21. Turbulent Flow Over Large Roughness Elements: Effect of Frontal and Plan Solidity on Turbulence Statistics and Structure.
    Placidi M; Ganapathisubramani B
    Boundary Layer Meteorol; 2018; 167(1):99-121. PubMed ID: 31258157
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Combined effects of surface roughness and wetting characteristics on the moving contact line in microchannel flows.
    Chakraborty D; Dingari NN; Chakraborty S
    Langmuir; 2012 Dec; 28(48):16701-10. PubMed ID: 23131003
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Scattering of electromagnetic waves from 3D multilayer random rough surfaces based on the second-order small perturbation method: energy conservation, reflectivity, and emissivity.
    Sanamzadeh M; Tsang L; Johnson JT; Burkholder RJ; Tan S
    J Opt Soc Am A Opt Image Sci Vis; 2017 Mar; 34(3):395-409. PubMed ID: 28248366
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Numerical analysis of the chemically reactive EMHD flow of a nanofluid past a bi-directional Riga plate influenced by velocity slips and convective boundary conditions.
    Algehyne EA; Alharbi AF; Saeed A; Dawar A; Kumam P; Galal AM
    Sci Rep; 2022 Sep; 12(1):15849. PubMed ID: 36151361
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Multi-scale electronics transport properties in non-ideal CVD graphene sheet.
    Bishnoi B; Buerkle M; Nakamura H
    Sci Rep; 2022 Jul; 12(1):11214. PubMed ID: 35780171
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Discrete phase model of blood flow in a roughness microchannel simulating the formation of pseudointima.
    Kopernik M; Dyrda K; Kurtyka P; Major R
    Acta Bioeng Biomech; 2022; 24(1):131-144. PubMed ID: 38314485
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Oscillating laminar electrokinetic flow in infinitely extended rectangular microchannels.
    Yang J; Bhattacharyya A; Masliyah JH; Kwok DY
    J Colloid Interface Sci; 2003 May; 261(1):21-31. PubMed ID: 12725820
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Effect of the wall roughness on slip and rheological properties of hexadecane in molecular dynamics simulation of couette shear flow between two sinusoidal walls.
    Jabbarzadeh A; Atkinson JD; Tanner RI
    Phys Rev E Stat Phys Plasmas Fluids Relat Interdiscip Topics; 2000 Jan; 61(1):690-9. PubMed ID: 11046312
    [TBL] [Abstract][Full Text] [Related]  

  • 29. A Novel Fabrication Technique for Liquid-Tight Microchannels by Combination of a Paraffin Polymer and a Photo-Curable Silicone Elastomer.
    Mogi K; Sakata K; Hashimoto Y; Yamamoto T
    Materials (Basel); 2016 Jul; 9(8):. PubMed ID: 28773742
    [TBL] [Abstract][Full Text] [Related]  

  • 30. How much particle surface corrugation is sufficient to improve aerosol performance of powders?
    Chew NY; Tang P; Chan HK; Raper JA
    Pharm Res; 2005 Jan; 22(1):148-52. PubMed ID: 15771241
    [TBL] [Abstract][Full Text] [Related]  

  • 31. The effect of bottom roughness on scalar transport in aquatic ecosystems: implications for reproduction and recruitment in the benthos.
    Quinn NP; Ackerman JD
    J Theor Biol; 2015 Mar; 369():59-66. PubMed ID: 25596514
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Effects of surface wettability and roughness of microchannel on flow behaviors of thermo-responsive microspheres therein during the phase transition.
    Zhou MY; Xie R; Yu YL; Chen G; Ju XJ; Yang L; Liang B; Chu LY
    J Colloid Interface Sci; 2009 Aug; 336(1):162-70. PubMed ID: 19394620
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Does surface roughness amplify wetting?
    Malijevský A
    J Chem Phys; 2014 Nov; 141(18):184703. PubMed ID: 25399155
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Corrugation of chemically converted graphene monolayers on SiO(2).
    Sinitskii A; Kosynkin DV; Dimiev A; Tour JM
    ACS Nano; 2010 Jun; 4(6):3095-102. PubMed ID: 20446664
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Combined electroosmotic and pressure-driven transport of neutral solutes across a rough, porous-walled microtube.
    Sengupta S; Dasgupta T; Roy D; Dejam M; De S
    Electrophoresis; 2023 Apr; 44(7-8):711-724. PubMed ID: 36720044
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Profiling a soft solid layer to passively control the conduit shape in a compliant microchannel during flow.
    Karan P; Chakraborty J; Chakraborty S; Wereley ST; Christov IC
    Phys Rev E; 2021 Jul; 104(1-2):015108. PubMed ID: 34412219
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Unsteady electroosmosis in a microchannel with Poisson-Boltzmann charge distribution.
    Chang CC; Kuo CY; Wang CY
    Electrophoresis; 2011 Nov; 32(23):3341-7. PubMed ID: 22072500
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Anisotropic Strain Relaxation of Graphene by Corrugation on Copper Crystal Surfaces.
    Deng B; Wu J; Zhang S; Qi Y; Zheng L; Yang H; Tang J; Tong L; Zhang J; Liu Z; Peng H
    Small; 2018 May; 14(22):e1800725. PubMed ID: 29717818
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Roughness-induced filling.
    Rejmer K
    Phys Rev E Stat Nonlin Soft Matter Phys; 2002 Jun; 65(6 Pt 1):061606. PubMed ID: 12188742
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Roughness induced boundary slip in microchannel flows.
    Kunert C; Harting J
    Phys Rev Lett; 2007 Oct; 99(17):176001. PubMed ID: 17995347
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.