These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

168 related articles for article (PubMed ID: 37630157)

  • 1. Electrohydrodynamic Printed Ultra-Micro AgNPs Thin Film Temperature Sensors Array for High-Resolution Sensing.
    He Y; Li L; Su Z; Xu L; Guo M; Duan B; Wang W; Cheng B; Sun D; Hai Z
    Micromachines (Basel); 2023 Aug; 14(8):. PubMed ID: 37630157
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Temperature-Sensing Inks Using Electrohydrodynamic Inkjet Printing Technology.
    Ahn JH; Hong HJ; Lee CY
    Materials (Basel); 2021 Sep; 14(19):. PubMed ID: 34640024
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Inkjet Printing of Polyacrylic Acid-Coated Silver Nanoparticle Ink onto Paper with Sub-100 Micron Pixel Size.
    Mavuri A; Mayes AG; Alexander MS
    Materials (Basel); 2019 Jul; 12(14):. PubMed ID: 31311191
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Compatibility and performance study of electrohydrodynamic printing using zinc oxide inkjet ink.
    Esa Z; Nauman MM; Ullah M; Khalid MU; Mehdi M; Abid M; Iqbal A; Zaini JH; Ali K
    Sci Rep; 2024 Jul; 14(1):16813. PubMed ID: 39039124
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Coaxial Electrohydrodynamic Printing of Microscale Core-Shell Conductive Features for Integrated Fabrication of Flexible Transparent Electronics.
    Yu K; Qiu Z; Gu B; Li J; Meng Z; Li D; He J
    ACS Appl Mater Interfaces; 2024 Jan; 16(1):1114-1128. PubMed ID: 38133830
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Fabrication of Low-Cost Resistance Temperature Detectors and Micro-Heaters by Electrohydrodynamic Printing.
    Ahmad S; Rahman K; Cheema TA; Shakeel M; Khan A; Bermak A
    Micromachines (Basel); 2022 Aug; 13(9):. PubMed ID: 36144041
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Electrohydrodynamic jet-printed zinc-tin oxide TFTs and their bias stability.
    Lee YG; Choi WS
    ACS Appl Mater Interfaces; 2014 Jul; 6(14):11167-72. PubMed ID: 25000343
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Self-Driven, Monopolar Electrohydrodynamic Printing via Dielectric Nanoparticle Layer.
    Wang H; Ye D; Li A; Zhang B; Guo W; Wang B; Wang Z; Wu Q; Zhao C; Zhang GJ; Huang Y
    Nano Lett; 2024 Aug; 24(31):9511-9519. PubMed ID: 39042397
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Silver Nano-Inks Synthesized with Biobased Polymers for High-Resolution Electrohydrodynamic Printing Toward In-Space Manufacturing.
    Kirscht T; Jiang L; Liu F; Jiang X; Marander M; Ortega R; Qin H; Jiang S
    ACS Appl Mater Interfaces; 2024 Aug; 16(33):44225-44235. PubMed ID: 39079046
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Improved Electrical Properties of EHD Jet-Patterned MoS
    Can TTT; Choi WS
    Nanomaterials (Basel); 2023 Jan; 13(1):. PubMed ID: 36616104
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Fabrication of nanoscale nozzle for electrohydrodynamic (EHD) inkjet head and high precision patterning by drop-on-demand operation.
    Nguyen VD; Schrlau MG; Tran SB; Bau HH; Ko HS; Byun D
    J Nanosci Nanotechnol; 2009 Dec; 9(12):7298-302. PubMed ID: 19908776
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Electrohydrodynamic-Jet-Printed SnO
    Wang D; Yu D; Xu M; Chen X; Gu J; Huang L
    Sensors (Basel); 2024 Jul; 24(15):. PubMed ID: 39123914
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A Strategy toward Realizing Narrow Line with High Electrical Conductivity by Electrohydrodynamic Printing.
    Liang H; Yao R; Zhang G; Zhang X; Liang Z; Yang Y; Ning H; Zhong J; Qiu T; Peng J
    Membranes (Basel); 2022 Jan; 12(2):. PubMed ID: 35207062
    [TBL] [Abstract][Full Text] [Related]  

  • 14. La(Ca)CrO
    He G; He Y; Xu L; Li L; Wang L; Hai Z; Sun D
    Micromachines (Basel); 2023 Aug; 14(9):. PubMed ID: 37763882
    [TBL] [Abstract][Full Text] [Related]  

  • 15. One-Step Sub-micrometer-Scale Electrohydrodynamic Inkjet Three-Dimensional Printing Technique with Spontaneous Nanoscale Joule Heating.
    Zhang B; Seong B; Lee J; Nguyen V; Cho D; Byun D
    ACS Appl Mater Interfaces; 2017 Sep; 9(35):29965-29972. PubMed ID: 28806052
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Micropatterning of Metal-Grid Micro Electro Mechanical Systems (MEMS) Sensor for Crack Detection Using Electrohydrodynamic Printing System.
    Lee YC; Leeghim H; Lee CY
    J Nanosci Nanotechnol; 2020 Jul; 20(7):4385-4389. PubMed ID: 31968480
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Stability Bounds for Micron Scale Ag Conductor Lines Produced by Electrohydrodynamic Inkjet Printing.
    Yang J; He P; Derby B
    ACS Appl Mater Interfaces; 2022 Aug; 14(34):39601-39609. PubMed ID: 35979913
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Fully Inkjet-Printed Chemiresistive Sensor Array Based on Molecularly Imprinted Sol-Gel Active Materials.
    Ye X; Ge L; Jiang T; Guo H; Chen B; Liu C; Hayashi K
    ACS Sens; 2022 Jul; 7(7):1819-1828. PubMed ID: 35731925
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Electrohydrodynamic Printing of Microscale PEDOT:PSS-PEO Features with Tunable Conductive/Thermal Properties.
    Chang J; He J; Lei Q; Li D
    ACS Appl Mater Interfaces; 2018 Jun; 10(22):19116-19122. PubMed ID: 29745637
    [TBL] [Abstract][Full Text] [Related]  

  • 20. High-Resolution, Transparent, and Flexible Printing of Polydimethylsiloxane via Electrohydrodynamic Jet Printing for Conductive Electronic Device Applications.
    Hassan RU; Khalil SM; Khan SA; Ali S; Moon J; Cho DH; Byun D
    Polymers (Basel); 2022 Oct; 14(20):. PubMed ID: 36297952
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.