These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

156 related articles for article (PubMed ID: 37630168)

  • 1. Simultaneous Hydrostatic and Compressive Loading System for Mimicking the Mechanical Environment of Living Cartilage Tissue.
    Chang M; Takahashi Y; Miyahira K; Omuro Y; Montagne K; Yamada R; Gondo J; Kambe Y; Yasuno M; Masumoto N; Ushida T; Furukawa KS
    Micromachines (Basel); 2023 Aug; 14(8):. PubMed ID: 37630168
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Dynamic culturing of cartilage tissue: the significance of hydrostatic pressure.
    Correia C; Pereira AL; Duarte AR; Frias AM; Pedro AJ; Oliveira JT; Sousa RA; Reis RL
    Tissue Eng Part A; 2012 Oct; 18(19-20):1979-91. PubMed ID: 22559784
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Dynamic compression improves biosynthesis of human zonal chondrocytes from osteoarthritis patients.
    Jeon JE; Schrobback K; Hutmacher DW; Klein TJ
    Osteoarthritis Cartilage; 2012 Aug; 20(8):906-15. PubMed ID: 22548797
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Tissue engineering of cartilage using a mechanobioreactor exerting simultaneous mechanical shear and compression to simulate the rolling action of articular joints.
    Shahin K; Doran PM
    Biotechnol Bioeng; 2012 Apr; 109(4):1060-73. PubMed ID: 22095592
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Improvement of In Vitro Three-Dimensional Cartilage Regeneration by a Novel Hydrostatic Pressure Bioreactor.
    Chen J; Yuan Z; Liu Y; Zheng R; Dai Y; Tao R; Xia H; Liu H; Zhang Z; Zhang W; Liu W; Cao Y; Zhou G
    Stem Cells Transl Med; 2017 Mar; 6(3):982-991. PubMed ID: 28297584
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Dynamic unconfined compression of articular cartilage under a cyclic compressive load.
    Suh JK
    Biorheology; 1996; 33(4-5):289-304. PubMed ID: 8977656
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Shear and Compression Bioreactor for Cartilage Synthesis.
    Shahin K; Doran PM
    Methods Mol Biol; 2015; 1340():221-33. PubMed ID: 26445842
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Layer dependence in strain distribution and chondrocyte damage in porcine articular cartilage exposed to excessive compressive stress loading.
    Huang W; Warner M; Sasaki H; Furukawa KS; Ushida T
    J Mech Behav Biomed Mater; 2020 Dec; 112():104088. PubMed ID: 32992283
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A novel compressive stress-based osteoarthritis-like chondrocyte system.
    Young IC; Chuang ST; Gefen A; Kuo WT; Yang CT; Hsu CH; Lin FH
    Exp Biol Med (Maywood); 2017 May; 242(10):1062-1071. PubMed ID: 28492349
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The dynamic mechanical environment of the chondrocyte: a biphasic finite element model of cell-matrix interactions under cyclic compressive loading.
    Kim E; Guilak F; Haider MA
    J Biomech Eng; 2008 Dec; 130(6):061009. PubMed ID: 19045538
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Hydrostatic Pressure Regulates MicroRNA Expression Levels in Osteoarthritic Chondrocyte Cultures via the Wnt/β-Catenin Pathway.
    Cheleschi S; De Palma A; Pecorelli A; Pascarelli NA; Valacchi G; Belmonte G; Carta S; Galeazzi M; Fioravanti A
    Int J Mol Sci; 2017 Jan; 18(1):. PubMed ID: 28085114
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Hydrostatic pressure in articular cartilage tissue engineering: from chondrocytes to tissue regeneration.
    Elder BD; Athanasiou KA
    Tissue Eng Part B Rev; 2009 Mar; 15(1):43-53. PubMed ID: 19196119
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effects of temporal hydrostatic pressure on tissue-engineered bovine articular cartilage constructs.
    Elder BD; Athanasiou KA
    Tissue Eng Part A; 2009 May; 15(5):1151-8. PubMed ID: 18831685
    [TBL] [Abstract][Full Text] [Related]  

  • 14. [An in vitro study on three-dimensional cultivation with dynamic compressive stimulation for cartilage tissue engineering].
    Wang Yongcheng ; Meng H; Yuan Xueling ; Peng J; Guo Q; Lu S; Wang A
    Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi; 2014 Sep; 28(9):1145-9. PubMed ID: 25509782
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Primary chondrocytes resist hydrostatic pressure-induced stress while primary synovial cells and fibroblasts show modified Hsp70 response.
    Kaarniranta K; Holmberg CI; Lammi MJ; Eriksson JE; Sistonen L; Helminen HJ
    Osteoarthritis Cartilage; 2001 Jan; 9(1):7-13. PubMed ID: 11178942
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Culturing functional cartilage tissue under a novel bionic mechanical condition.
    Sun M; Lv D; Zhang C; Zhu L
    Med Hypotheses; 2010 Dec; 75(6):657-9. PubMed ID: 20800365
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Dynamic behavior of a biphasic cartilage model under cyclic compressive loading.
    Suh JK; Li Z; Woo SL
    J Biomech; 1995 Apr; 28(4):357-64. PubMed ID: 7738045
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Hydrostatic Pressure Regulates Oxidative Stress through microRNA in Human Osteoarthritic Chondrocytes.
    Cheleschi S; Barbarino M; Gallo I; Tenti S; Bottaro M; Frati E; Giannotti S; Fioravanti A
    Int J Mol Sci; 2020 May; 21(10):. PubMed ID: 32455798
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Study of changes in rat mandibular condyle under intermittent cyclic and continuous compressive stress.
    Gong C; Wen J; Wang H; Li H
    Arch Oral Biol; 2021 Apr; 124():105066. PubMed ID: 33571732
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Using Costal Chondrocytes to Engineer Articular Cartilage with Applications of Passive Axial Compression and Bioactive Stimuli.
    Huwe LW; Sullan GK; Hu JC; Athanasiou KA
    Tissue Eng Part A; 2018 Mar; 24(5-6):516-526. PubMed ID: 28683690
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.