These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
176 related articles for article (PubMed ID: 37630193)
1. Rapid and Low-Cost Quantification of Adulteration Content in Liu Q; Gong Z; Li D; Wen T; Guan J; Zheng W Molecules; 2023 Aug; 28(16):. PubMed ID: 37630193 [TBL] [Abstract][Full Text] [Related]
2. [Model Optimization of Ternary System Adulteration Detection in Camellia Oil Based on Visible/Near Infrared Spectroscopy]. Mo XX; Zhou Y; Sun T; Wu YQ; Liu MH Guang Pu Xue Yu Guang Pu Fen Xi; 2016 Dec; 36(12):3881-4. PubMed ID: 30235404 [TBL] [Abstract][Full Text] [Related]
3. Reflectance Spectroscopy with Multivariate Methods for Non-Destructive Discrimination of Edible Oil Adulteration. Su N; Weng S; Wang L; Xu T Biosensors (Basel); 2021 Dec; 11(12):. PubMed ID: 34940249 [TBL] [Abstract][Full Text] [Related]
4. Detection and quantification of groundnut oil adulteration with machine learning using a comparative approach with NIRS and UV-VIS. Zaukuu JZ; Adam MN; Nkansah AA; Mensah ET Sci Rep; 2024 Sep; 14(1):20931. PubMed ID: 39251628 [TBL] [Abstract][Full Text] [Related]
5. [Effect of Optical Length on Detection Accuracy of Camellia Oil Adulteration by Near Infrared Spectroscopy]. Sun T; Wu YQ; Xu P; Wen ZC; Hu T; Liu MH Guang Pu Xue Yu Guang Pu Fen Xi; 2015 Jul; 35(7):1894-8. PubMed ID: 26717747 [TBL] [Abstract][Full Text] [Related]
6. Discrimination of Transgenic Canola ( Sohn SI; Pandian S; Zaukuu JZ; Oh YJ; Park SY; Na CS; Shin EK; Kang HJ; Ryu TH; Cho WS; Cho YS Int J Mol Sci; 2021 Dec; 23(1):. PubMed ID: 35008646 [TBL] [Abstract][Full Text] [Related]
7. Multispecies Adulteration Detection of Camellia Oil by Chemical Markers. Dou X; Mao J; Zhang L; Xie H; Chen L; Yu L; Ma F; Wang X; Zhang Q; Li P Molecules; 2018 Jan; 23(2):. PubMed ID: 29370131 [TBL] [Abstract][Full Text] [Related]
8. Rapid detection of adulteration of olive oil with soybean oil combined with chemometrics by Fourier transform infrared, visible-near-infrared and excitation-emission matrix fluorescence spectroscopy: A comparative study. Meng X; Yin C; Yuan L; Zhang Y; Ju Y; Xin K; Chen W; Lv K; Hu L Food Chem; 2023 Mar; 405(Pt A):134828. PubMed ID: 36370570 [TBL] [Abstract][Full Text] [Related]
9. [Qualitative-Quantitative Analysis of Rice Bran Oil Adulteration Based on Laser Near Infrared Spectroscopy]. Tu B; Song ZQ; Zheng X; Zeng LL; Yin C; He DP; Qi PS Guang Pu Xue Yu Guang Pu Fen Xi; 2015 Jun; 35(6):1539-45. PubMed ID: 26601363 [TBL] [Abstract][Full Text] [Related]
10. Rapid detection of adulteration of minced beef using Vis/NIR reflectance spectroscopy with multivariate methods. Weng S; Guo B; Tang P; Yin X; Pan F; Zhao J; Huang L; Zhang D Spectrochim Acta A Mol Biomol Spectrosc; 2020 Apr; 230():118005. PubMed ID: 31951866 [TBL] [Abstract][Full Text] [Related]
11. [Detection of Camellia Oleifera Oil Adulterated with Sunflower Oil with Near Infrared (NIR) Spectroscopy and Characteristic Spectra]. Chu X; Wang W; Zhao X; Jiang HZ; Wang W; Liu SQ Guang Pu Xue Yu Guang Pu Fen Xi; 2017 Jan; 37(1):75-9. PubMed ID: 30192483 [TBL] [Abstract][Full Text] [Related]
12. Comparison of near infrared spectroscopy and Raman spectroscopy for the identification and quantification through MCR-ALS and PLS of peanut oil adulterants. Castro RC; Ribeiro DSM; Santos JLM; Páscoa RNMJ Talanta; 2021 Aug; 230():122373. PubMed ID: 33934802 [TBL] [Abstract][Full Text] [Related]
13. [Quantitative Analysis of Deep-Frying Oil Adulterated Virgin Olive Oil Using Vis-NIR Spectroscopy with iPLS]. Xian RY; Huang FR; Li YP; Pan SS; Chen Z; Chen ZQ; Wang Y Guang Pu Xue Yu Guang Pu Fen Xi; 2016 Aug; 36(8):2462-7. PubMed ID: 30074347 [TBL] [Abstract][Full Text] [Related]
14. [Quality analysis of olive oil and quantification detection of adulteration in olive oil by near-infrared spectrometry and chemometrics]. Zhuang XL; Xiang YH; Qiang H; Zhang ZY; Zou MQ; Zhang XF Guang Pu Xue Yu Guang Pu Fen Xi; 2010 Apr; 30(4):933-6. PubMed ID: 20545134 [TBL] [Abstract][Full Text] [Related]
15. Highly efficient authentication of edible oils by FTIR spectroscopy coupled with chemometrics. Ye Q; Meng X Food Chem; 2022 Aug; 385():132661. PubMed ID: 35299015 [TBL] [Abstract][Full Text] [Related]
16. Rapid quantification of single component oil in perilla oil blends by ultraviolet-visible spectroscopy combined with chemometrics. Wang Y; Li Z; Wang W; Liu P; Tan X; Bian X Spectrochim Acta A Mol Biomol Spectrosc; 2024 Nov; 321():124710. PubMed ID: 38936207 [TBL] [Abstract][Full Text] [Related]
17. [Discrimination of pressed and extracted camellia oils by Vis/NIR spectra combined with UVE-PLS-LDA]. Wen ZC; Sun T; Geng X; Liu MH Guang Pu Xue Yu Guang Pu Fen Xi; 2013 Sep; 33(9):2354-8. PubMed ID: 24369630 [TBL] [Abstract][Full Text] [Related]
18. Rapid identification of peanut oil adulteration by near infrared spectroscopy and chemometrics. Peng Q; Feng X; Chen J; Meng K; Zheng H; Zhang L; Chen X; Xie G Spectrochim Acta A Mol Biomol Spectrosc; 2024 Nov; 321():124690. PubMed ID: 38909556 [TBL] [Abstract][Full Text] [Related]
19. Rapid identification and quantification of cheaper vegetable oil adulteration in camellia oil by using excitation-emission matrix fluorescence spectroscopy combined with chemometrics. Wang T; Wu HL; Long WJ; Hu Y; Cheng L; Chen AQ; Yu RQ Food Chem; 2019 Sep; 293():348-357. PubMed ID: 31151622 [TBL] [Abstract][Full Text] [Related]
20. Detection and quantification of cocoa powder adulteration using Vis-NIR spectroscopy with chemometrics approach. Millatina NRN; Calle JLP; Barea-Sepúlveda M; Setyaningsih W; Palma M Food Chem; 2024 Aug; 449():139212. PubMed ID: 38583399 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]