BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

197 related articles for article (PubMed ID: 37630205)

  • 1. Application of New COF Materials in Secondary Battery Anode Materials.
    Jia M; Zhang L; Yuan Q
    Molecules; 2023 Aug; 28(16):. PubMed ID: 37630205
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Cobalt Coordinated Cyano Covalent-Organic Framework for High-Performance Potassium-Organic Batteries.
    Zhao L; Zheng L; Li X; Wang H; Lv LP; Chen S; Sun W; Wang Y
    ACS Appl Mater Interfaces; 2021 Oct; 13(41):48913-48922. PubMed ID: 34609129
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Covalent Organic Frameworks: Their Composites and Derivatives for Rechargeable Metal-Ion Batteries.
    Sun B; Sun Z; Yang Y; Huang XL; Jun SC; Zhao C; Xue J; Liu S; Liu HK; Dou SX
    ACS Nano; 2024 Jan; 18(1):28-66. PubMed ID: 38117556
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Accessible COF-Based Functional Materials for Potassium-Ion Batteries and Aluminum Batteries.
    Zhang Q; Wei H; Wang L; Wang J; Fan L; Ding H; Lei J; Yu X; Lu B
    ACS Appl Mater Interfaces; 2019 Nov; 11(47):44352-44359. PubMed ID: 31670939
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Multilayer structure covalent organic frameworks (COFs) linking by double functional groups for advanced K
    Su Z; Huang J; Wang R; Zhang Y; Zeng L; Zhang Y; Fan H
    J Colloid Interface Sci; 2023 Jun; 639():7-13. PubMed ID: 36796111
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Exceptional Sodium-Ion Storage by an Aza-Covalent Organic Framework for High Energy and Power Density Sodium-Ion Batteries.
    Shehab MK; Weeraratne KS; Huang T; Lao KU; El-Kaderi HM
    ACS Appl Mater Interfaces; 2021 Apr; 13(13):15083-15091. PubMed ID: 33749255
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Imine-Induced Metal-Organic and Covalent Organic Coexisting Framework with Superior Li-Storage Properties and Activation Mechanism.
    Zhao L; Tang X; Lv LP; Chen S; Sun W; Wang Y
    ChemSusChem; 2021 Aug; 14(16):3283-3292. PubMed ID: 34142447
    [TBL] [Abstract][Full Text] [Related]  

  • 8. One-Dimensional Covalent Organic Framework as High-Performance Cathode Materials for Lithium-Ion Batteries.
    Jia C; Duan A; Liu C; Wang WZ; Gan SX; Qi QY; Li Y; Huang X; Zhao X
    Small; 2023 Jun; 19(24):e2300518. PubMed ID: 36918750
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Cationic covalent-organic framework for sulfur storage with high-performance in lithium-sulfur batteries.
    Wang S; Liang Y; Dai T; Liu Y; Sui Z; Tian X; Chen Q
    J Colloid Interface Sci; 2021 Jun; 591():264-272. PubMed ID: 33607400
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Research progress of biomass carbon materials as anode materials for potassium-ion batteries.
    Li X; Zhou Y; Deng B; Li J; Xiao Z
    Front Chem; 2023; 11():1162909. PubMed ID: 37188094
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Covalent Organic Framework with Highly Accessible Carbonyls and π-Cation Effect for Advanced Potassium-Ion Batteries.
    Luo XX; Li WH; Liang HJ; Zhang HX; Du KD; Wang XT; Liu XF; Zhang JP; Wu XL
    Angew Chem Int Ed Engl; 2022 Mar; 61(10):e202117661. PubMed ID: 35034424
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Organic electrodes based on redox-active covalent organic frameworks for lithium batteries.
    Dantas R; Ribeiro C; Souto M
    Chem Commun (Camb); 2023 Dec; 60(2):138-149. PubMed ID: 38051115
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Hybrid Acid/alkali All Covalent Organic Frameworks Battery.
    Xu Y; Cai P; Chen K; Chen Q; Wen Z; Chen L
    Angew Chem Int Ed Engl; 2023 Apr; 62(18):e202215584. PubMed ID: 36840681
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Functionalized Graphene Quantum Dots Modified Dioxin-Linked Covalent Organic Frameworks for Superior Lithium Storage.
    Wang H; Zhao L; Tang X; Lv LP; Sun W; Wang Y
    Chemistry; 2022 Feb; 28(12):e202103901. PubMed ID: 35028990
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Covalent organic frameworks and their composites for rechargeable batteries.
    Xu Y; Gong J; Li Q; Guo X; Wan X; Xu L; Pang H
    Nanoscale; 2024 Jun; 16(24):11429-11456. PubMed ID: 38855977
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Covalent organic framework with high capacity for the lithium ion battery anode: insight into intercalation of Li from first-principles calculations.
    Fang L; Cao X; Cao Z
    J Phys Condens Matter; 2019 May; 31(20):205502. PubMed ID: 30780142
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Covalent-Organic-Framework-Based Li-CO
    Li X; Wang H; Chen Z; Xu HS; Yu W; Liu C; Wang X; Zhang K; Xie K; Loh KP
    Adv Mater; 2019 Nov; 31(48):e1905879. PubMed ID: 31609043
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Alkynyl-Based Covalent Organic Frameworks as High-Performance Anode Materials for Potassium-Ion Batteries.
    Wolfson ER; Schkeryantz L; Moscarello EM; Fernandez JP; Paszek J; Wu Y; Hadad CM; McGrier PL
    ACS Appl Mater Interfaces; 2021 Sep; 13(35):41628-41636. PubMed ID: 34448573
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Tin-nitrogen coordination boosted lithium-storage sites and electrochemical properties in covalent-organic framework with layer-assembled hollow structure.
    Tang X; Lv LP; Chen S; Sun W; Wang Y
    J Colloid Interface Sci; 2022 Sep; 622():591-601. PubMed ID: 35533476
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The application of covalent organic frameworks in Lithium-Sulfur batteries: A mini review for current research progress.
    Wang Z; Pan F; Zhao Q; Lv M; Zhang B
    Front Chem; 2022; 10():1055649. PubMed ID: 36339042
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.